Patents by Inventor Chris J. Tremel

Chris J. Tremel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11670995
    Abstract: There is provided a system including a dual rotor electrical machine. The dual rotor electrical machine comprises a stator, an inner rotor including a first number of permanent magnet pole pairs, and a modulator including a second number of modulating segments. The system includes a controller configured to execute non-transitory machine readable instructions that, when executed by the controller, cause the system to determine a virtual position of an electromagnetic field of the stator based on a weighted sum of an angular position of the inner rotor and an angular position of the modulator, wherein weights in the weighted sum are based on the first number and the second number.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: June 6, 2023
    Assignee: Deere & Company
    Inventors: Matthias Lang, Chris J. Tremel, Christopher Reek
  • Publication number: 20210242761
    Abstract: There is provided a system including a dual rotor electrical machine. The dual rotor electrical machine comprises a stator, an inner rotor including a first number of permanent magnet pole pairs, and a modulator including a second number of modulating segments. The system includes a controller configured to execute non-transitory machine readable instructions that, when executed by the controller, cause the system to determine a virtual position of an electromagnetic field of the stator based on a weighted sum of an angular position of the inner rotor and an angular position of the modulator, wherein weights in the weighted sum are based on the first number and the second number.
    Type: Application
    Filed: August 25, 2020
    Publication date: August 5, 2021
    Applicant: Deere & Company
    Inventors: Matthias LANG, Chris J. TREMEL, Christopher REEK
  • Patent number: 10295581
    Abstract: A controller including a memory having computer-readable instructions stored therein; and a processor configured to execute the computer-readable instructions to: estimate a synthesized grid voltage vector angle at a terminal of an alternating current (AC) grid based on at least an adjusted angle, to generate Pulse Width Modulation (PWM) signals to control power switches of the AFE inverter based on at least the synthesized grid voltage vector angle, and to control the AFE inverter to exchange power between the AC grid and a load based on the PWM signals.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: May 21, 2019
    Assignee: Deere & Company
    Inventors: Tianjun Fu, Long Wu, Kent Wanner, Jason Dickherber, Chris J. Tremel
  • Patent number: 10270327
    Abstract: A controller may include a memory having computer-readable instructions stored therein; and a processor configured to execute the computer-readable instructions to generate Pulse Width Modulation (PWM) signals to control power switches of an Active Front End (AFE) inverter based on at least a synthesized grid voltage vector angle at a terminal of an alternating current (AC) grid without using physical voltage sensors at the terminal of the AC grid, and control the AFE inverter to supply power to a load based on the PWM signals.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: April 23, 2019
    Assignee: Deere & Company
    Inventors: Tianjun Fu, Long Wu, Kent Wanner, Jason Dickherber, Chris J. Tremel
  • Publication number: 20190113553
    Abstract: A controller including a memory having computer-readable instructions stored therein; and a processor configured to execute the computer-readable instructions to: estimate a synthesized grid voltage vector angle at a terminal of an alternating current (AC) grid based on at least an adjusted angle, to generate Pulse Width Modulation (PWM) signals to control power switches of the AFE inverter based on at least the synthesized grid voltage vector angle, and to control the AFE inverter to exchange power between the AC grid and a load based on the PWM signals.
    Type: Application
    Filed: March 8, 2018
    Publication date: April 18, 2019
    Inventors: Tianjun FU, Long Wu, Kent Wanner, Jason Dickherber, Chris J. Tremel
  • Publication number: 20190115820
    Abstract: A controller may include a memory having computer-readable instructions stored therein; and a processor configured to execute the computer-readable instructions to generate Pulse Width Modulation (PWM) signals to control power switches of an Active Front End (AFE) inverter based on at least a synthesized grid voltage vector angle at a terminal of an alternating current (AC) grid without using physical voltage sensors at the terminal of the AC grid, and control the AFE inverter to supply power to a load based on the PWM signals.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 18, 2019
    Applicant: Deere & Company
    Inventors: Tianjun FU, Long WU, Kent WANNER, Jason DICKHERBER, Chris J. TREMEL
  • Patent number: 9689777
    Abstract: A fault detection system is disclosed for predicting bearing failure in a system with a bearing-supported shaft. A position sensor may sense a position of the shaft as the shaft rotates. A controller may receive, from the position sensor, position data indicating a plurality of sensed positions of the shaft. The controller may determine a position or velocity profile for the shaft based upon the received position data and may determine a frequency profile based upon the position or velocity profile. The controller may identify a characteristic of the frequency profile, and identify an expected bearing failure based upon the identified characteristic.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: June 27, 2017
    Assignee: Deere & Company
    Inventors: Zimin W. Vilar, Chris J. Tremel, Jacob Pence
  • Publication number: 20160327452
    Abstract: A fault detection system is disclosed for predicting bearing failure in a system with a bearing-supported shaft. A position sensor may sense a position of the shaft as the shaft rotates. A controller may receive, from the position sensor, position data indicating a plurality of sensed positions of the shaft. The controller may determine a position or velocity profile for the shaft based upon the received position data and may determine a frequency profile based upon the position or velocity profile. The controller may identify a characteristic of the frequency profile, and identify an expected bearing failure based upon the identified characteristic.
    Type: Application
    Filed: May 4, 2015
    Publication date: November 10, 2016
    Inventors: ZIMIN W. VILAR, CHRIS J. TREMEL, JACOB PENCE
  • Patent number: 9475403
    Abstract: Provided is a method and controller for controlling a vehicle dc bus voltage. The method includes generating a parameter. The parameter is based on a reference dc bus voltage squared. The method includes controlling the vehicle dc bus voltage based on the parameter and a detected dc bus voltage. The method may also include generating another parameter based on a power demand associated with at least one of a motoring mode operation and a generating mode operation of a traction motor associated with the vehicle. The power demand is indicated in a message received via a dedicated high speed data bus. The method includes controlling the vehicle dc bus voltage based on the another parameter.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: October 25, 2016
    Assignee: DEERE & COMPANY
    Inventors: Long Wu, Chris J. Tremel, Zimin W. Vilar, Alan K. Gilman, Robert Shaw
  • Patent number: 9071186
    Abstract: In one example embodiment, a device for controlling an alternating current (AC) machine is disclosed. The device includes a processor configured to determine a plurality of instantaneous voltages corresponding to a plurality of phase voltages of an inverter, the inverter driving the AC machine. The processor is further configured to determine an actual line-to-line voltage of the inverter based on the plurality of instantaneous voltages. The processor is further configured to determine a terminal voltage feedback for controlling the AC machine, based on the determined actual line-to-line voltage and a terminal voltage threshold.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: June 30, 2015
    Assignee: Deere & Company
    Inventors: Long Wu, Tianjun Fu, Chris J. Tremel
  • Publication number: 20150057868
    Abstract: Provided is a method and controller for controlling a vehicle dc bus voltage. The method includes generating a parameter. The parameter is based on a reference dc bus voltage squared. The method includes controlling the vehicle dc bus voltage based on the parameter and a detected dc bus voltage. The method may also include generating another parameter based on a power demand associated with at least one of a motoring mode operation and a generating mode operation of a traction motor associated with the vehicle. The power demand is indicated in a message received via a dedicated high speed data bus. The method includes controlling the vehicle dc bus voltage based on the another parameter.
    Type: Application
    Filed: October 1, 2014
    Publication date: February 26, 2015
    Inventors: Long WU, Chris J. TREMEL, Zimin W. VILAR, Alan K. GILMAN, Robert SHAW
  • Patent number: 8880250
    Abstract: Provided is a method and controller for controlling a vehicle dc bus voltage. The method includes generating a parameter. The parameter is based on a reference dc bus voltage squared. The method includes controlling the vehicle dc bus voltage based on the parameter and a detected dc bus voltage. The method may also include generating another parameter based on a power demand associated with at least one of a motoring mode operation and a generating mode operation of a traction motor associated with the vehicle. The power demand is indicated in a message received via a dedicated high speed data bus. The method includes controlling the vehicle dc bus voltage based on the another parameter.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: November 4, 2014
    Assignee: Deere & Company
    Inventors: Long Wu, Chris J. Tremel, Zimin W. Vilar, Alan K. Gilman, Robert Shaw
  • Patent number: 8872455
    Abstract: For each phase of a controller, semiconductor switches comprise a high side switch and a low side switch. A direct current voltage bus provides electrical energy to the semiconductor switches. A measuring circuit is adapted to measure the collector-emitter voltage or drain-source voltage for each semiconductor switch of the controller. A data processor determines that a short circuit in a particular semiconductor switch is present if the measured collector-emitter voltage or measured source-drain voltage for the particular semiconductor switch is lower than a minimum threshold and if an observed current associated with the particular semiconductor switch has an opposite polarity from a normal operational polarity. A driver simultaneously activates counterpart switches of like direct current input polarity that are coupled to other phase windings of the electric motor, other than the particular semiconductor switch, to protect the electric motor from potential damage associated with asymmetric current flow.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: October 28, 2014
    Assignee: Deere & Company
    Inventors: Chris J Tremel, Eric Vilar
  • Publication number: 20140306637
    Abstract: In one example embodiment, a device for controlling an alternating current (AC) machine is disclosed. The device includes a processor configured to determine a plurality of instantaneous voltages corresponding to a plurality of phase voltages of an inverter, the inverter driving the AC machine. The processor is further configured to determine an actual line-to-line voltage of the inverter based on the plurality of instantaneous voltages. The processor is further configured to determine a terminal voltage feedback for controlling the AC machine, based on the determined actual line-to-line voltage and a terminal voltage threshold.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 16, 2014
    Applicant: DEERE & COMPANY
    Inventors: Long WU, Tianjun FU, Chris J. TREMEL
  • Patent number: 8836256
    Abstract: A drive system has a switched reluctance motor (SR motor) and a control system configured to determine an estimated total torque of SR motor as a function of the phase voltages and phase currents of the phases of the SR motor.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: September 16, 2014
    Assignee: Deere & Company
    Inventors: Zimin W. Vilar, Chris J. Tremel
  • Patent number: 8810189
    Abstract: Example embodiments disclose a drive system including a machine including a plurality of phases and configured to generate power based on a plurality of phase currents, each respectively associated with the plurality of phases and a direct current (DC) bus, operatively connected to the machine. The DC bus includes a high-side line, a low-side line, and an inverter including a plurality of switching systems, operatively connected between the high-side line and the low-side line, the plurality of switching systems, each configured to output a respective one of the plurality of phase currents. The drive system also includes a controller, operatively connected to the DC bus and the machine, the controller configured to determine if a failure exists in the drive system based on the plurality of phase currents and a DC bus voltage, the DC bus voltage being a voltage across the high-side line and the low-side line.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: August 19, 2014
    Assignee: Deere & Company
    Inventors: Brij N. Singh, Chris J. Tremel, Alan K. Gilman
  • Publication number: 20140015459
    Abstract: A drive system has a switched reluctance motor (SR motor) and a control system configured to determine an estimated total torque of SR motor as a function of the phase voltages and phase currents of the phases of the SR motor.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Inventors: Zimin W. Vilar, Chris J. Tremel
  • Publication number: 20130314014
    Abstract: For each phase of a controller, semiconductor switches comprise a high side switch and a low side switch. A direct current voltage bus provides electrical energy to the semiconductor switches. A measuring circuit is adapted to measure the collector-emitter voltage or drain-source voltage for each semiconductor switch of the controller. A data processor determines that a short circuit in a particular semiconductor switch is present if the measured collector-emitter voltage or measured source-drain voltage for the particular semiconductor switch is lower than a minimum threshold and if an observed current associated with the particular semiconductor switch has an opposite polarity from a normal operational polarity. A driver simultaneously activates counterpart switches of like direct current input polarity that are coupled to other phase windings of the electric motor, other than the particular semiconductor switch, to protect the electric motor from potential damage associated with asymmetric current flow.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 28, 2013
    Inventors: Chris J. Tremel, Eric Vilar
  • Patent number: 8531141
    Abstract: A method calibrates a current sensing instant to latch a current value from a set of current signals. A current command including a magnitude at a Gamma angle is provided to control a motor when the motor is operating in a motoring mode at a shaft speed. A matching current command including a same magnitude at a same Gamma angle is provided to control the motor when the motor is operating in a braking mode at a same shaft speed. A first actual averaging rms current magnitude of three phase currents of the motor is monitored when the motor is controlled by the current command and operating in the motoring mode. A second actual averaging rms current magnitude of the three phase currents of the motor is monitored when the motor is controlled by the matching current command and operating in the braking mode. A current sensing instant is adjusted until an observed first actual averaging rms current magnitude in the motoring mode equals an observed second actual averaging rms current magnitude in the braking mode.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: September 10, 2013
    Assignee: Deere & Company
    Inventors: Long Wu, Robert Shaw, Chris J. Tremel, Kent D. Wanner
  • Publication number: 20120217920
    Abstract: Example embodiments disclose a drive system including a machine including a plurality of phases and configured to generate power based on a plurality of phase currents, each respectively associated with the plurality of phases and a direct current (DC) bus, operatively connected to the machine. The DC bus includes a high-side line, a low-side line, and an inverter including a plurality of switching systems, operatively connected between the high-side line and the low-side line, the plurality of switching systems, each configured to output a respective one of the plurality of phase currents. The drive system also includes a controller, operatively connected to the DC bus and the machine, the controller configured to determine if a failure exists in the drive system based on the plurality of phase currents and a DC bus voltage, the DC bus voltage being a voltage across the high-side line and the low-side line.
    Type: Application
    Filed: March 21, 2011
    Publication date: August 30, 2012
    Applicant: DEERE & COMPANY
    Inventors: Brij N. Singh, Chris J. Tremel, Alan K. Gilman