Patents by Inventor Chris Kettering

Chris Kettering has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11130561
    Abstract: Airflow-dependent deployable fences for aircraft wings are described. An example apparatus includes a fence of a wing of an aircraft. The fence includes a base that is coupled to the wing and a panel that is movable relative to the base and the wing between a stowed position in which the panel extends along a skin of the wing, and a deployed position in which the panel extends at an upward angle away from the skin. The panel is configured to impede a spanwise airflow along the wing when the panel is in the deployed position. The panel is configured to move from the deployed position to the stowed position in response to an aerodynamic force exerted on the panel.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: September 28, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Brian Tillotson, Chris Kettering
  • Patent number: 11066149
    Abstract: Airflow-dependent deployable fences for aircraft wings are described. An example apparatus includes a fence coupled to a wing of an aircraft. The fence is movable relative to the wing between a stowed position in which a panel of the fence extends along a skin of the wing, and a deployed position in which the panel extends at an upward angle away from the skin. The panel is configured to impede a spanwise airflow along the wing when the fence is in the deployed position. The fence is configured to move from the deployed position to the stowed position in response to an aerodynamic force exerted on the panel.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: July 20, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Brian Tillotson, Chris Kettering
  • Patent number: 11059565
    Abstract: Airflow-dependent deployable fences for aircraft wings are described. An example apparatus includes a fence coupled to a wing of an aircraft. The fence is movable relative to the wing between a stowed position in which a panel of the fence extends along a skin of the wing, and a deployed position in which the panel extends at an upward angle away from the skin. The panel is configured to impede a spanwise airflow along the wing when the fence is in the deployed position. The fence is configured to move from the stowed position to the deployed position in response to an aerodynamic force exerted on a deployment vane of the fence.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: July 13, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Brian Tillotson, Chris Kettering
  • Patent number: 11059564
    Abstract: Automated deployable fences for aircraft wings are described. An example apparatus includes a fence, a latching actuator, and a biasing actuator. The fence is coupled to a wing of an aircraft. The fence is movable relative to the wing between a stowed position in which a panel of the fence extends along a skin of the wing, and a deployed position in which the panel extends at an upward angle away from the skin. The panel impedes a spanwise airflow along the wing when the fence is in the deployed position. The latching actuator is movable between a first position in which the latching actuator maintains the fence in the stowed position, and a second position in which the latching actuator releases the fence from the stowed position. The latching actuator moves from the first position to the second position in response to a control signal received at the latching actuator.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: July 13, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Brian Tillotson, Chris Kettering
  • Publication number: 20200156761
    Abstract: Automated deployable fences for aircraft wings are described. An example apparatus includes a fence, a latching actuator, and a biasing actuator. The fence is coupled to a wing of an aircraft. The fence is movable relative to the wing between a stowed position in which a panel of the fence extends along a skin of the wing, and a deployed position in which the panel extends at an upward angle away from the skin. The panel impedes a spanwise airflow along the wing when the fence is in the deployed position. The latching actuator is movable between a first position in which the latching actuator maintains the fence in the stowed position, and a second position in which the latching actuator releases the fence from the stowed position. The latching actuator moves from the first position to the second position in response to a control signal received at the latching actuator.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 21, 2020
    Inventors: Brian Tillotson, Chris Kettering
  • Publication number: 20200156763
    Abstract: Airflow-dependent deployable fences for aircraft wings are described. An example apparatus includes a fence of a wing of an aircraft. The fence includes a base that is coupled to the wing and a panel that is movable relative to the base and the wing between a stowed position in which the panel extends along a skin of the wing, and a deployed position in which the panel extends at an upward angle away from the skin. The panel is configured to impede a spanwise airflow along the wing when the panel is in the deployed position. The panel is configured to move from the deployed position to the stowed position in response to an aerodynamic force exerted on the panel.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 21, 2020
    Inventors: Brian Tillotson, Chris Kettering
  • Publication number: 20200156762
    Abstract: Airflow-dependent deployable fences for aircraft wings are described. An example apparatus includes a fence coupled to a wing of an aircraft. The fence is movable relative to the wing between a stowed position in which a panel of the fence extends along a skin of the wing, and a deployed position in which the panel extends at an upward angle away from the skin. The panel is configured to impede a spanwise airflow along the wing when the fence is in the deployed position. The fence is configured to move from the stowed position to the deployed position in response to an aerodynamic force exerted on a deployment vane of the fence.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 21, 2020
    Inventors: Brian Tillotson, Chris Kettering
  • Publication number: 20200156760
    Abstract: Airflow-dependent deployable fences for aircraft wings are described. An example apparatus includes a fence coupled to a wing of an aircraft. The fence is movable relative to the wing between a stowed position in which a panel of the fence extends along a skin of the wing, and a deployed position in which the panel extends at an upward angle away from the skin. The panel is configured to impede a spanwise airflow along the wing when the fence is in the deployed position. The fence is configured to move from the deployed position to the stowed position in response to an aerodynamic force exerted on the panel.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 21, 2020
    Inventors: Brian Tillotson, Chris Kettering