Patents by Inventor Chris Lightcap

Chris Lightcap has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240081833
    Abstract: A method of operating a surgical system includes controlling a robotic arm in a first control mode in which the robotic arm constrains movement of a surgical tool coupled to the robotic arm to a virtual geometry correlated with an anatomical feature, switching, responsive to the surgical tool crossing an exit boundary, from the first control mode to a second control mode, and controlling the robotic arm in the second control mode in which movement of the surgical tool is unconstrained by the virtual geometry.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Applicant: MAKO Surgical Corp.
    Inventors: Jason Otto, Radu Iorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Patent number: 11857201
    Abstract: A system includes a surgical tool, a robot holding the surgical tool, and non-transitory computer-readable memory storing instructions that, when executed, cause the robot to perform operations including automatically moving the surgical tool to a virtual geometry correlated with an anatomical structure and forcing, following arrival of the surgical tool at the virtual geometry, the surgical tool to stay at the virtual geometry while allowing manual repositioning of the surgical tool along the virtual geometry.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: January 2, 2024
    Assignee: MAKO Surgical Corp.
    Inventors: Jason Otto, Radu Iorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Patent number: 11857200
    Abstract: A surgical system includes a robotic arm, an end effector held by the robotic arm, a tracking system configured to detect a patient position and an end effector position, and a processor and non-transitory memory storing instructions that, when executed by the processor, cause the processor to define a planned trajectory relative to the patient position, obtain the patient position and the end effector position from the tracking system during manual movement of the end effector by a user, determine whether the end effector position is within a threshold of the planned trajectory based on the patient position and the end effector position obtained during the manual movement of the end effector, and upon determination that the end effector position is within the threshold of the planned trajectory, take over and control the robotic arm to automatically align the end effector with the planned trajectory.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: January 2, 2024
    Assignee: MAKO Surgical Corp.
    Inventors: Jason Otto, Radu Iorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Publication number: 20220151639
    Abstract: A system includes a surgical tool, a robot holding the surgical tool, and non-transitory computer-readable memory storing instructions that, when executed, cause the robot to perform operations including automatically moving the surgical tool to a virtual geometry correlated with an anatomical structure and forcing, following arrival of the surgical tool at the virtual geometry, the surgical tool to stay at the virtual geometry while allowing manual repositioning of the surgical tool along the virtual geometry.
    Type: Application
    Filed: February 8, 2022
    Publication date: May 19, 2022
    Applicant: MAKO Surgical Corp.
    Inventors: Jason Otto, Radu Iorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Publication number: 20220142655
    Abstract: A surgical system includes a robotic arm, an end effector held by the robotic arm, a tracking system configured to detect a patient position and an end effector position, and a processor and non-transitory memory storing instructions that, when executed by the processor, cause the processor to define a planned trajectory relative to the patient position, obtain the patient position and the end effector position from the tracking system during manual movement of the end effector by a user, determine whether the end effector position is within a threshold of the planned trajectory based on the patient position and the end effector position obtained during the manual movement of the end effector, and upon determination that the end effector position is within the threshold of the planned trajectory, take over and control the robotic arm to automatically align the end effector with the planned trajectory.
    Type: Application
    Filed: January 21, 2022
    Publication date: May 12, 2022
    Applicant: MAKO Surgical Corp.
    Inventors: Jason Otto, Radu Iorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Patent number: 11278296
    Abstract: A surgical system includes a surgical tool and a processing circuit. The processing circuit is configured to provide a plurality of virtual haptic interaction points where each virtual haptic interaction point is associated with a portion of the surgical tool such that movement of the surgical tool corresponds to movement of the plurality of virtual haptic interaction points, establish a haptic object that defines a working boundary for the surgical tool, and constrain at least one of the portions of the surgical tool based on a relationship between at least one of the plurality of virtual haptic interaction points and the haptic object.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: March 22, 2022
    Assignee: MAKO Surgical Corp.
    Inventors: Jason Otto, Radu Iorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Patent number: 11259816
    Abstract: A surgical system includes a surgical tool associated with a virtual haptic interaction point such that movement of the virtual haptic interaction point corresponds to movement of the surgical tool. The surgical system further includes a processing circuit to establish a virtual entry boundary and activate a haptic object, which constrains the surgical tool after the haptic interaction point crosses the virtual entry boundary.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: March 1, 2022
    Assignee: MAKO Surgical Corp.
    Inventors: Jason Otto, Radu Iorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Publication number: 20200170651
    Abstract: A surgical system includes a surgical tool and a processing circuit. The processing circuit is configured to provide a plurality of virtual haptic interaction points where each virtual haptic interaction point is associated with a portion of the surgical tool such that movement of the surgical tool corresponds to movement of the plurality of virtual haptic interaction points, establish a haptic object that defines a working boundary for the surgical tool, and constrain at least one of the portions of the surgical tool based on a relationship between at least one of the plurality of virtual haptic interaction points and the haptic object.
    Type: Application
    Filed: February 10, 2020
    Publication date: June 4, 2020
    Applicant: MAKO Surgical Corp.
    Inventors: Jason Otto, Radu Iorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Patent number: 10595880
    Abstract: A surgical system includes a surgical tool and a processing circuit. The processing circuit is configured to provide a plurality of virtual haptic interaction points where each virtual haptic interaction point is associated with a portion of the surgical tool such that movement of the surgical tool corresponds to movement of the plurality of virtual haptic interaction points, establish a haptic object that defines a working boundary for the surgical tool, and constrain at least one of the portions of the surgical tool based on a relationship between at least one of the plurality of virtual haptic interaction points and the haptic object.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: March 24, 2020
    Assignee: MAKO Surgical Corp.
    Inventors: Jason Otto, Radu Iorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Publication number: 20190357918
    Abstract: A surgical system includes a surgical tool associated with a virtual haptic interaction point such that movement of the virtual haptic interaction point corresponds to movement of the surgical tool. The surgical system further includes a processing circuit to establish a virtual entry boundary and activate a haptic object, which constrains the surgical tool after the haptic interaction point crosses the virtual entry boundary.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Applicant: MAKO Surgical Corp.
    Inventors: Jason Otto, Radu Iorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Patent number: 10398449
    Abstract: A surgical system includes a surgical tool associated with a virtual haptic interaction point such that movement of the virtual haptic interaction point corresponds to movement of the surgical tool. The surgical system further includes a processing circuit to establish a virtual entry boundary and activate a haptic object, which constrains the surgical tool after the haptic interaction point crosses the virtual entry boundary.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 3, 2019
    Assignee: MAKO Surgical Corp.
    Inventors: Jason Otto, Radu Iorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Publication number: 20170265872
    Abstract: A surgical system includes a surgical tool and a processing circuit. The processing circuit is configured to provide a plurality of virtual haptic interaction points where each virtual haptic interaction point is associated with a portion of the surgical tool such that movement of the surgical tool corresponds to movement of the plurality of virtual haptic interaction points, establish a haptic object that defines a working boundary for the surgical tool, and constrain at least one of the portions of the surgical tool based on a relationship between at least one of the plurality of virtual haptic interaction points and the haptic object.
    Type: Application
    Filed: June 1, 2017
    Publication date: September 21, 2017
    Applicant: MAKO Surgical Corp.
    Inventors: Jason Otto, Radu Iorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Patent number: 9539060
    Abstract: Described are computer-based methods and apparatuses, including computer program products, for inertially tracked objects with a kinematic coupling. A tracked pose of a first inertial measurement unit (IMU) is determined, wherein the first IMU is mounted to a first object. The tracked pose of the first IMU is reset while the first object is in a first reproducible reference pose with a second object.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: January 10, 2017
    Assignee: MAKO Surgical Corp.
    Inventors: Chris Lightcap, Hyosig Kang
  • Publication number: 20160113730
    Abstract: Described are computer-based methods and apparatuses, including computer program products, for inertially tracked objects with a kinematic coupling. A tracked pose of a first inertial measurement unit (IMU) is determined, wherein the first IMU is mounted to a first object. The tracked pose of the first IMU is reset while the first object is in a first reproducible reference pose with a second object.
    Type: Application
    Filed: January 4, 2016
    Publication date: April 28, 2016
    Applicant: MAKO Surgical Corporation
    Inventors: Chris Lightcap, Hyosig Kang
  • Patent number: 9226799
    Abstract: Described are computer-based methods and apparatuses, including computer program products, for inertially tracked objects with a kinematic coupling. A tracked pose of a first inertial measurement unit (IMU) is determined, wherein the first IMU is mounted to a first object. The tracked pose of the first IMU is reset while the first object is in a first reproducible reference pose with a second object.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: January 5, 2016
    Assignee: MAKO Surgical Corp.
    Inventors: Chris Lightcap, Hyosig Kang
  • Publication number: 20150342691
    Abstract: A surgical system includes a surgical tool and a processing circuit. The processing circuit is configured to provide a plurality of virtual haptic interaction points where each virtual haptic interaction point is associated with a portion of the surgical tool such that movement of the surgical tool corresponds to movement of the plurality of virtual haptic interaction points, establish a haptic object that defines a working boundary for the surgical tool, and constrain at least one of the portions of the surgical tool based on a relationship between at least one of the plurality of virtual haptic interaction points and the haptic object.
    Type: Application
    Filed: August 12, 2015
    Publication date: December 3, 2015
    Applicant: MAKO SURGICAL CORP.
    Inventors: Jason Otto, Radu Iorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Patent number: 9050131
    Abstract: A fiber optic tracking system for tracking substantially rigid object(s) is described. The fiber optic tracking system includes a light source, an optical fiber having a sensing component configured to modify optical signals from the light source, the optical fiber being configured to attach to the substantially rigid object, a detection unit arranged to receive the modified optical signals from the sensing component, and a calculation unit configured to determine a pose of the substantially rigid object in six degrees of freedom based on the modified optical signals.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: June 9, 2015
    Assignee: MAKO Surgical Corp.
    Inventors: Robert Van Vorhis, Benny Hagag, Hyosig Kang, Chris Lightcap, Rony Abovitz
  • Publication number: 20140180290
    Abstract: A surgical system includes a surgical tool associated with a virtual haptic interaction point such that movement of the virtual haptic interaction point corresponds to movement of the surgical tool. The surgical system further includes a processing circuit to establish a virtual entry boundary and activate a haptic object, which constrains the surgical tool after the haptic interaction point crosses the virtual entry boundary.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: MAKO Surgical Corp.
    Inventors: Jason Otto, Radu lorgulescu, Chris Lightcap, Brian Schmitz, Jason Wojcik, Carinne Cecile Granchi
  • Publication number: 20140031664
    Abstract: An imaging system includes a radiation source, a detector fixed to the radiation source such that the radiation source and detector form a hand-held imaging device configured to acquire image data, and a navigation system configured to track a pose of the hand-held imaging device.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Inventors: Hyosig KANG, Chris LIGHTCAP, David BERMAN
  • Publication number: 20110320153
    Abstract: Described are computer-based methods and apparatuses, including computer program products, for inertially tracked objects with a kinematic coupling. A tracked pose of a first inertial measurement unit (IMU) is determined, wherein the first IMU is mounted to a first object. The tracked pose of the first IMU is reset while the first object is in a first reproducible reference pose with a second object.
    Type: Application
    Filed: June 23, 2010
    Publication date: December 29, 2011
    Applicant: MAKO Surgical Corp.
    Inventors: Chris Lightcap, Hyosig Kang