Patents by Inventor Chris Rowe Taitt

Chris Rowe Taitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10220364
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: March 5, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Publication number: 20180229205
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Patent number: 9962676
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: May 8, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Patent number: 9581594
    Abstract: Porphyrin-modified antimicrobial peptides as described here may be used as indicators of the presence of microbial targets. Their application may be as (for example) (1) fluorescent indicators in a microarray format, (2) fluorescence or absorbance based indicators in traditional solution based applications, or (3) reflectance based indicators for use in reagent-less detection platforms.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 28, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Chris Rowe Taitt, Brandy J. White
  • Publication number: 20160228840
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Application
    Filed: March 31, 2015
    Publication date: August 11, 2016
    Applicant: The Governmnet of the United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Patent number: 9182392
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: November 10, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Patent number: 8945856
    Abstract: A method of biochemical identification by: providing a plurality of capture species bound to one or more substrates and suspected of having one or more biological targets affinity bound to at least one capture species; detecting which capture species contain bound biological targets to generate a binding pattern; and identifying the biological target based on the binding pattern. The capture species are independently selected from the group consisting of antimicrobial peptides, cytotoxic peptides, antibiotics, and combinations thereof. A device having the capture species bound to the substrates. At least two of the capture species are capable of multi-specific binding to one or more biological targets and may have overlapping but not identical affinity properties.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: February 3, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nadezhda V. Kulagina, Chris Rowe Taitt, George P. Anderson, Frances S. Ligler
  • Publication number: 20140274776
    Abstract: Porphyrin-modified antimicrobial peptides as described here may be used as indicators of the presence of microbial targets. Their application may be as (for example) (1) fluorescent indicators in a microarray format, (2) fluorescence or absorbance based indicators in traditional solution based applications, or (3) reflectance based indicators for use in reagent-less detection platforms.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Chris Rowe Taitt, Brandy J. White
  • Publication number: 20140187446
    Abstract: A method of biochemical identification by: providing a plurality of capture species bound to one or more substrates and suspected of having one or more biological targets affinity bound to at least one capture species; detecting which capture species contain bound biological targets to generate a binding pattern; and identifying the biological target based on the binding pattern. The capture species are independently selected from the group consisting of antimicrobial peptides, cytotoxic peptides, antibiotics, and combinations thereof. A device having the capture species bound to the substrates. At least two of the capture species are capable of multi-specific binding to one or more biological targets and may have overlapping but not identical affinity properties.
    Type: Application
    Filed: February 25, 2014
    Publication date: July 3, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Nadezhda V. Kulagina, Chris Rowe Taitt, George P. Anderson, Frances S. Ligler
  • Publication number: 20140154791
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Application
    Filed: February 7, 2014
    Publication date: June 5, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Patent number: 8658372
    Abstract: A method of biochemical identification by: providing a plurality of capture species bound to one or more substrates and suspected of having one or more biological targets affinity bound to at least one capture species; detecting which capture species contain bound biological targets to generate a binding pattern; and identifying the biological target based on the binding pattern. The capture species are independently selected from the group consisting of antimicrobial peptides, cytotoxic peptides, antibiotics, and combinations thereof. A device having the capture species bound to the substrates. At least two of the capture species are capable of multi-specific binding to one or more biological targets and may have overlapping but not identical affinity properties.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: February 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nadezhda V Kulagina, Chris Rowe Taitt, George P Anderson, Frances S Ligler
  • Patent number: 8651158
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: February 18, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Publication number: 20110116992
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 19, 2011
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt