Patents by Inventor Chris Schmidt

Chris Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10303448
    Abstract: Disclosed herein are methods, systems, and computer program products directed to a guidance engine. The guidance engine is configured to query a knowledge base for guidance with respect to a property of a software application. The guidance engine receives a responsive query from the knowledge base that is based on the property. The responsive query informs a user of the guidance engine how to address a vulnerability within the software application by performing a transform with respect to a property of the software application.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: May 28, 2019
    Assignee: Synopsys, Inc.
    Inventors: John Steven, Chris Schmidt, Jordan Tyler Thayer
  • Publication number: 20170329582
    Abstract: Disclosed herein are methods, systems, and computer program products directed to a guidance engine. The guidance engine is configured to query a knowledge base for guidance with respect to a property of a software application. The guidance engine receives a responsive query from the knowledge base that is based on the property. The responsive query informs a user of the guidance engine how to address a vulnerability within the software application by performing a transform with respect to a property of the software application.
    Type: Application
    Filed: May 15, 2017
    Publication date: November 16, 2017
    Inventors: John STEVEN, Chris Schmidt, Jordan Tyler Thayer
  • Publication number: 20150366957
    Abstract: The present invention relates to certain melanoma-associated oligopeptides that are recognized by CD8-positive cytotoxic T-lymphocytes (CTLs) as peptide antigen and which elicit a CTL-induced lysis and/or apoptosis of tumor cells. The present invention also relates to the use of these melanoma-associated oligopeptides in cancer therapy.
    Type: Application
    Filed: July 7, 2015
    Publication date: December 24, 2015
    Inventors: Daniela EBERTS, Martina FATHO, Volker LENNERZ, Chris SCHMIDT, Pierre VAN DER BRUGGEN, Catherine WÖLFEL, Thomas WÖLFEL
  • Patent number: 8389321
    Abstract: A solar cell includes a substrate, a protective layer located over a first surface of the substrate, a first electrode located over a second surface of the substrate, at least one p-type semiconductor absorber layer located over the first electrode, an n-type semiconductor layer located over the p-type semiconductor absorber layer, and a second electrode over the n-type semiconductor layer. The p-type semiconductor absorber layer includes a copper indium selenide (CIS) based alloy material, and the second electrode is transparent and electrically conductive. The protective layer has an emissivity greater than 0.25 at a wavelength of 2 ?m, has a reactivity with a selenium-containing gas lower than that of the substrate, and may differ from the first electrode in at least one of composition, thickness, density, emissivity, conductivity or stress state. The emissivity profile of the protective layer may be uniform or non-uniform.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: March 5, 2013
    Assignee: MiaSole
    Inventors: Chris Schmidt, John Corson
  • Patent number: 8115095
    Abstract: A solar cell includes a substrate, a protective layer located over a first surface of the substrate, a first electrode located over a second surface of the substrate, at least one p-type semiconductor absorber layer located over the first electrode, an n-type semiconductor layer located over the p-type semiconductor absorber layer, and a second electrode over the n-type semiconductor layer. The p-type semiconductor absorber layer includes a copper indium selenide (CIS) based alloy material, and the second electrode is transparent and electrically conductive. The protective layer has an emissivity greater than 0.25 at a wavelength of 2 ?m, has a reactivity with a selenium-containing gas lower than that of the substrate, and may differ from the first electrode in at least one of composition, thickness, density, emissivity, conductivity or stress state. The emissivity profile of the protective layer may be uniform or non-uniform.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 14, 2012
    Assignee: MiaSole
    Inventors: Chris Schmidt, John Corson
  • Patent number: 8110738
    Abstract: A solar cell includes a substrate, a protective layer located over a first surface of the substrate, a first electrode located over a second surface of the substrate, at least one p-type semiconductor absorber layer located over the first electrode, an n-type semiconductor layer located over the p-type semiconductor absorber layer, and a second electrode over the n-type semiconductor layer. The p-type semiconductor absorber layer includes a copper indium selenide (CIS) based alloy material, and the second electrode is transparent and electrically conductive. The protective layer has an emissivity greater than 0.25 at a wavelength of 2 ?m, has a reactivity with a selenium-containing gas lower than that of the substrate, and may differ from the first electrode in at least one of composition, thickness, density, emissivity, conductivity or stress state. The emissivity profile of the protective layer may be uniform or non-uniform.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 7, 2012
    Assignee: MiaSole
    Inventors: Chris Schmidt, John Corson
  • Publication number: 20110318868
    Abstract: A solar cell includes a substrate, a protective layer located over a first surface of the substrate, a first electrode located over a second surface of the substrate, at least one p-type semiconductor absorber layer located over the first electrode, an n-type semiconductor layer located over the p-type semiconductor absorber layer, and a second electrode over the n-type semiconductor layer. The p-type semiconductor absorber layer includes a copper indium selenide (CIS) based alloy material, and the second electrode is transparent and electrically conductive. The protective layer has an emissivity greater than 0.25 at a wavelength of 2 ?m, has a reactivity with a selenium-containing gas lower than that of the substrate, and may differ from the first electrode in at least one of composition, thickness, density, emissivity, conductivity or stress state. The emissivity profile of the protective layer may be uniform or non-uniform.
    Type: Application
    Filed: September 12, 2011
    Publication date: December 29, 2011
    Applicant: MiaSole
    Inventors: Chris Schmidt, John Corson
  • Publication number: 20110318941
    Abstract: A solar cell includes a first electrode located over a substrate, at least one p-type semiconductor absorber layer located over the first electrode, the p-type semiconductor absorber layer comprising a copper indium selenide (CIS) based alloy material, an n-type semiconductor layer located over the p-type semiconductor absorber layer, an insulating aluminum zinc oxide layer located over the n-type semiconductor layer, the insulating aluminum zinc oxide having an aluminum content of 100 ppm to 5000 ppm and a second electrode over the insulating aluminum layer, the second electrode being transparent and electrically conductive. The insulating aluminum zinc oxide having an aluminum content of 100 ppm to 5000 ppm, may be deposited by pulsed DC, non-pulsed DC, or AC sputtering from an aluminum doped zinc oxide having an aluminum content of 100 ppm to 5000 ppm.
    Type: Application
    Filed: September 1, 2011
    Publication date: December 29, 2011
    Inventors: Chris Schmidt, Bruce Hachtmann
  • Publication number: 20100236628
    Abstract: A solar cell includes a first electrode located over a substrate, at least one p-type semiconductor absorber layer located over the first electrode, the p-type semiconductor absorber layer comprising a copper indium selenide (CIS) based alloy material, an n-type semiconductor layer located over the p-type semiconductor absorber layer, an insulating aluminum zinc oxide layer located over the n-type semiconductor layer, the insulating aluminum zinc oxide having an aluminum content of 100 ppm to 5000 ppm and a second electrode over the insulating aluminum layer, the second electrode being transparent and electrically conductive. The insulating aluminum zinc oxide having an aluminum content of 100 ppm to 5000 ppm, may be deposited by pulsed DC, non-pulsed DC, or AC sputtering from an aluminum doped zinc oxide having an aluminum content of 100 ppm to 5000 ppm.
    Type: Application
    Filed: March 17, 2009
    Publication date: September 23, 2010
    Inventors: Chris Schmidt, Bruce Hachtmann
  • Publication number: 20100212733
    Abstract: A solar cell includes a substrate, a protective layer located over a first surface of the substrate, a first electrode located over a second surface of the substrate, at least one p-type semiconductor absorber layer located over the first electrode, an n-type semiconductor layer located over the p-type semiconductor absorber layer, and a second electrode over the n-type semiconductor layer. The p-type semiconductor absorber layer includes a copper indium selenide (CIS) based alloy material, and the second electrode is transparent and electrically conductive. The protective layer has an emissivity greater than 0.25 at a wavelength of 2 ?m, has a reactivity with a selenium-containing gas lower than that of the substrate, and may differ from the first electrode in at least one of composition, thickness, density, emissivity, conductivity or stress state. The emissivity profile of the protective layer may be uniform or non-uniform.
    Type: Application
    Filed: February 20, 2009
    Publication date: August 26, 2010
    Inventors: Chris Schmidt, John Corson
  • Publication number: 20100212732
    Abstract: A solar cell includes a substrate, a protective layer located over a first surface of the substrate, a first electrode located over a second surface of the substrate, at least one p-type semiconductor absorber layer located over the first electrode, an n-type semiconductor layer located over the p-type semiconductor absorber layer, and a second electrode over the n-type semiconductor layer. The p-type semiconductor absorber layer includes a copper indium selenide (CIS) based alloy material, and the second electrode is transparent and electrically conductive. The protective layer has an emissivity greater than 0.25 at a wavelength of 2 ?m, has a reactivity with a selenium-containing gas lower than that of the substrate, and may differ from the first electrode in at least one of composition, thickness, density, emissivity, conductivity or stress state. The emissivity profile of the protective layer may be uniform or non-uniform.
    Type: Application
    Filed: February 20, 2009
    Publication date: August 26, 2010
    Inventors: Chris Schmidt, John Corson
  • Patent number: 7661592
    Abstract: An interactive apparatus that is used in a game. The interactive apparatus is in the form of a stylus and contain a stylus housing and a processor coupled to the stylus housing and a memory unit comprising computer code for playing a game involving a plurality of printed cards and an audio output device and an optical emitter and an optical detector and wherein the audio output device, the memory unit, the optical emitter, and the optical detector are operatively coupled to the processor. The apparatus may scan the cards to enhance an interactive game play.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: February 16, 2010
    Assignee: Leapfrog Enterprises, Inc.
    Inventors: Alex Chisholm, Eric Petitt, Chris Schmidt
  • Publication number: 20090104186
    Abstract: The present invention relates to certain melanoma-associated oligopeptides that are recognized by CD8-positive cytotoxic T-lymphocytes (CTLs) as peptide antigen and which elicit a CTL-induced lysis and/or apoptosis of tumor cells. The present invention also relates to the use of these melanoma-associated oligopeptides in cancer therapy.
    Type: Application
    Filed: August 31, 2006
    Publication date: April 23, 2009
    Inventors: Daniela Eberts, Martina Fatho, Volker Lennerz, Chris Schmidt, Pierre Van Der Bruggen, Catherine Wolfel, Thomas Wolfel
  • Publication number: 20060055308
    Abstract: A plasma display filter includes five metallic layers, such as silver alloy layers, having a combined thickness that exceeds 50 nm. The metallic layers form an alternating pattern with dielectric layers, where the layer in the pattern closest to a supporting substrate is the first of the dielectric layers. Layer thicknesses are selected to achieve a low reflected color shift with changes in the viewing angle, relatively neutral transmitted color properties, and desirable shielding characteristics with respect to infrared and electromagnetic radiation.
    Type: Application
    Filed: September 16, 2004
    Publication date: March 16, 2006
    Inventors: Bruce Lairson, Stanley Louie, Chris Schmidt, Erik Gaderlund
  • Patent number: 6167353
    Abstract: A computer interface system and method is described which includes a way of interfacing with a physical game system. The game system may include a platform having a plurality of regions and a plurality of lots, a plurality of environmental objects positioned within an associated lot of the platform, and a movable object near at least one region. Additionally, each environmental object has an environmental identifier and is a global type or a local type, and each region has a region identifier and a plurality of subregions. The method includes the act of scanning the environmental objects and the movable object to extract data, where the extracted data includes a movable object position of the movable object and an environmental position for each environmental object and associated environmental identifier.
    Type: Grant
    Filed: February 2, 1998
    Date of Patent: December 26, 2000
    Assignee: Interval Research Corporation
    Inventors: Philippe P. Piernot, Marcos R. Vescovi, Adam Jordan, Chris Schmidt, Rafael Granados
  • Patent number: 5858844
    Abstract: The present invention comprises an innovative gate oxidation process after the disposition of the gate and prior to the disposition of the source and the drain by exposing the gate to oxygen at a predetermined temperature and for a predetermined time period for the optimized transistor performance. During the innovative gate oxidation process, oxygen penetrates into the interfaces of the gate conductive layer gate oxide and the gate dielectric layer silicon substrate and oxidizes portions of the gate conductive layer at the interfaces due to the oxygen smiling or the bird beak effect, which results in an increased effective thickness of the gate dielectric layer. Optionally, HCl can be introduced at a predetermined flowrate during the innovative gate oxidation process.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 12, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Hao Fang, Farrokh Omid-Zehoor, Todd Lukanc, Chris Schmidt
  • Patent number: 5682416
    Abstract: A method of communication handover from a first communication entity (33) to a second communication entity (43) in a communication system (10) where a communication unit (80), communicating with a transceiver (23) associated with the second communication entity, is linked to the first communication entity. The invention provides for establishing a communication link between the communication unit and the second communication entity while maintaining a communication link between the communication unit and the first communication entitiy. Then, communications are substantially simultaneously transfered to the second communication entity while terminated from the first communication entity.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: October 28, 1997
    Assignee: Motorola, Inc.
    Inventors: Chris Schmidt, Michael D. Kotzin, Barry J. Menich, Eugene J. Bruckert
  • Patent number: 5666309
    Abstract: A memory cell for a programmable logic device (PLD) and method for programming the memory cell. The memory cell includes components typically found in a memory cell for a PLD including an NMOS transistor having a floating gate, and two capacitors coupled to the floating gate, one capacitor being a tunneling capacitor enabling charge to be added to and removed from the floating gate. The memory cell further includes an NMOS pass gate transistor for supplying charge to the tunneling capacitor, but unlike conventional NMOS pass gates, it has a reduced threshold so that during programming when a programming voltage is applied to its drain, it can be turned on with an identical programming voltage applied to its gate, rather than requiring that its gate voltage be pumped above its drain voltage during programming. The reduced threshold can be obtained by removing the vt implant and punch through implant normally provided in its channel, or by other means.
    Type: Grant
    Filed: November 17, 1995
    Date of Patent: September 9, 1997
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jack Zezhong Peng, Jonathan Lin, Chris Schmidt