Patents by Inventor Chris Xu

Chris Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8556824
    Abstract: The present invention relates to an apparatus for producing optical pulses of a desired wavelength. The apparatus includes an optical pulse source operable to generate input optical pulses at a first wavelength. The apparatus further includes a higher order mode (HOM) fiber module operable to receive the input optical pulses at the first wavelength, and thereafter to produce output optical pulses at the desired wavelength by soliton self-frequency shift (SSFS). The present invention also relates to a method of producing optical pulses having a desired wavelength. This method includes generating input optical pulses using an optical pulse source, where the input optical pulses have a first wavelength and a first spatial mode.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: October 15, 2013
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Chris Xu, James Van Howe
  • Patent number: 8553337
    Abstract: Embodiments of the invention include an optical system and an optical system module, coupled to a distal end of a fluorescence emission endoscope apparatus, an optical waveguide-based fluorescence emission endoscopy system, and a method for remotely-controlled, multi-magnification imaging of a target or fluorescence emission collection from a target with a fluorescence emission endoscope apparatus. An exemplary system includes an objective lens disposed in a distal end of an endoscope apparatus. The lens is adapted to transmit both a visible target illumination and a fluorescence-emission-inducing target illumination as well as fluorescence-emission and visible light from the target. The system can thus simultaneously provide low magnification, large field of view imaging and high magnification, high-resolution multiphoton imaging with a single lens system.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: October 8, 2013
    Assignee: Cornell University
    Inventors: Watt W. Webb, Chris Xu
  • Patent number: 8554035
    Abstract: The present invention relates to an apparatus for producing optical pulses of a desired wavelength. The apparatus includes an optical pulse source operable to generate input optical pulses at a first wavelength. The apparatus further includes a higher-order-mode (HOM) fiber module operable to receive the input optical pulses at the first wavelength, and thereafter to produce output optical pulses at the desired wavelength by soliton self-frequency shift (SSFS). The present invention also relates to a method of producing optical pulses having a desired wavelength. This method includes generating input optical pulses using an optical pulse source, where the input optical pulses have a first wavelength and a first spatial mode.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: October 8, 2013
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Chris Xu, James Van Howe, Jennifer Lee
  • Publication number: 20130126756
    Abstract: A fluorescence emission imaging method and apparatus allows for high frame rate imaging in scattering medium as well as for fluorescence, phosphorescence, or luminescence lifetime imaging, time-resolved fluorescence, phosphorescence, or luminescence lifetime spectroscopy and imaging. A method involves providing an illumination beam, propagating the illumination beam to a light modulator array, modulating the illumination beam so as to generate an array of point sources, wherein each of the point sources is modulated at a frequency, imaging the modulated illumination beam on the object, and detecting a fluorescent, phosphorescent, or luminescent emission from the object. An optical imaging component in the form of a modulation mask has multiple bands. Each band has alternating transmissive and/or reflective and/or absorptive regions that are patterned such that light scanned over a band will be modulated at a band-related frequency.
    Type: Application
    Filed: January 24, 2011
    Publication date: May 23, 2013
    Applicant: Cornell University
    Inventors: Chunhui (Chris) Xu, Scott Howard, Adam Straub, Guanghao Zhu
  • Publication number: 20130006056
    Abstract: An optical lens comprising a lens body that transmits light in an optical path there through, wherein the lens body consists of an anterior surface, a posterior surface, and a medium there between, further wherein one of the anterior surface and the posterior surface has a single curvature and the other of the anterior surface and the posterior surface has at, least two optical zones each having a different curvature. An optical system, comprising a multi-photon endoscope having a distal end, and the optical lens disposed in the distal end. A method for obtaining an image of an object comprising providing the multi-photon endoscope, propagating light from the endoscope scanner one optical zone of the lens to focus the light at a focus location, and propagating light from the scanner through a different optical zones of the lens to focus the light at a different focus location.
    Type: Application
    Filed: January 24, 2011
    Publication date: January 3, 2013
    Applicant: Cornell University - Cornell Center for Technology Enterprise & Commercialization (CCTEC)
    Inventors: Watt W. Webb, Chunhui (Chris) Xu, Minghan Chen
  • Publication number: 20120140301
    Abstract: An optical scanner, scanner apparatus, or scanner assembly, which may be particularly advantageous for use in a multiphoton microscope, includes a first drivable bending component, a second drivable bending component mounted perpendicularly to the first component, and at least one optical waveguide coupled one or both of the first and second bending components, wherein the at least one optical waveguide provides both a propagation path for a multiphoton excitation radiation delivery between a light source and a target and a multiphoton-induced emission radiation delivery between the target and a detector. A GRIN relay lens. A multiphoton microscope incorporating the scanner and the GRIN relay lens.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 7, 2012
    Applicant: CORNELL UNIVERSITY
    Inventors: Chunhui (Chris) Xu, Watt W. Webb, Douglas S. Scherr, Dimitre Gueorguiev Ouzounov, David R. Rivera, Christopher M. Brown, Demirhan Kobat, David Huland, Scott S. Howard
  • Patent number: 8102594
    Abstract: Methods and systems for compensation of Self-Phase Modulation 35 in fiber-based amplifier systems 20.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: January 24, 2012
    Assignee: Cornell University
    Inventors: Chunhui (Chris) Xu, James W. van Howe, Guanghao Zhu
  • Patent number: 7883715
    Abstract: Solid and liquid pesticidal concentrate and spray compositions are described which exhibit enhanced efficacy due to the addition thereto of a compound which increases EPSPS enzyme inhibition by the pesticide, cell membrane permeability, or expression of hydroxyproline-rich glycoproteins.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: February 8, 2011
    Assignee: Monsanto Technology LLC
    Inventors: William Abraham, Michael K. Stern, Jeffrey Alan Graham, Xiaodong Chris Xu, Ronald J. Brinker, Jeffrey N. Travers, Tracey L. Reynolds
  • Publication number: 20100270479
    Abstract: Apparatus and methods relating to non-imaging, multiphoton fluorescence and optical second harmonic generation (SHG) (and higher harmonic generation) emission and detection. A weakly focused excitation beam is used to generate fluorescence emission in a volume of between about 0.1 cm3 to one cubic centimeter (1 cm3), which is significantly larger than the conventional MPM focal volume. A method for shaping and/or controlling (confining) the focal volume of a non-imaging, fluorescence emission excitation field in a target medium involves decoupling the axial dimension dependence of the focal volume from the lateral spot size of the excitation field. The method involves the step of spatially separating at least some of the spectral components of a short duration, multichromatic excitation field outside of the focal volume and spatially recombining the spectral components in a short duration, high intensity, weakly focused field incident on the target medium.
    Type: Application
    Filed: November 12, 2008
    Publication date: October 28, 2010
    Applicant: CORNELL UNIVERSITY
    Inventors: Watt W. Webb, Chris Xu
  • Publication number: 20100261958
    Abstract: Embodiments of the invention include an optical system and an optical system module, coupled to a distal end of a fluorescence emission endoscope apparatus, an optical waveguide-based fluorescence emission endoscopy system, and a method for remotely-controlled, multi-magnification imaging of a target or fluorescence emission collection from a target with a fluorescence emission endoscope apparatus. An exemplary system includes an objective lens disposed in a distal end of an endoscope apparatus. The lens is adapted to transmit both a visible target illumination and a fluorescence-emission-inducing target illumination as well as fluorescence-emission and visible light from the target. The system can thus simultaneously provide low magnification, large field of view imaging and high magnification, high-resolution multiphoton imaging with a single lens system.
    Type: Application
    Filed: November 12, 2008
    Publication date: October 14, 2010
    Applicant: CORNELL UNIVERSITY
    Inventors: Watt W. Webb, Chris Xu
  • Publication number: 20100100006
    Abstract: The present invention relates to an apparatus for producing optical pulses of a desired wavelength. The apparatus includes an optical pulse source operable to generate input optical pulses at a first wavelength. The apparatus further includes a higher order mode (HOM) fiber module operable to receive the input optical pulses at the first wavelength, and thereafter to produce output optical pulses at the desired wavelength by soliton self-frequency shift (SSFS). The present invention also relates to a method of producing optical pulses having a desired wavelength. This method includes generating input optical pulses using an optical pulse source, where the input optical pulses have a first wavelength and a first spatial mode.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 22, 2010
    Applicant: CORNELL RESEARCH FOUNDATION, INC
    Inventors: Chris Xu, James Van Howe
  • Publication number: 20100086251
    Abstract: The present invention relates to an apparatus for producing optical pulses of a desired wavelength. The apparatus includes an optical pulse source operable to generate input optical pulses at a first wavelength. The apparatus further includes a higher-order-mode (HOM) fiber module operable to receive the input optical pulses at the first wavelength, and thereafter to produce output optical pulses at the desired wavelength by soliton self-frequency shift (SSFS). The present invention also relates to a method of producing optical pulses having a desired wavelength. This method includes generating input optical pulses using an optical pulse source, where the input optical pulses have a first wavelength and a first spatial mode.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 8, 2010
    Inventors: Chris XU, James Van Howe
  • Publication number: 20090201573
    Abstract: Methods and systems for compensation of Self-Phase Modulation 35 in fiber-based amplifier systems 20.
    Type: Application
    Filed: April 27, 2007
    Publication date: August 13, 2009
    Applicant: CORNELL UNIVERSITY
    Inventors: Chunhui (Chris) Xu, James W. van Howe, Guanghao Zhu
  • Patent number: 7538935
    Abstract: A technique for generating variable pulse delays uses one or more nonlinear-optical processes such as cross-phase modulation, cross-gain modulation, self-phase modulation, four-wave mixing or parametric mixing, combined with group-velocity dispersion. The delay is controllable by changing the wavelength and/or power of a control laser. The delay is generated by introducing a controllable wavelength shift to a pulse of light, propagating the pulse through a material or an optical component that generates a wavelength dependent time delay, and wavelength shifting again to return the pulse to its original wavelength.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: May 26, 2009
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Alexander Gaeta, Jay E. Sharping, Chris Xu
  • Publication number: 20090052011
    Abstract: A technique for generating variable pulse delays uses one or more nonlinear-optical processes such as cross-phase modulation, cross-gain modulation, self-phase modulation, four-wave mixing or parametric mixing, combined with group-velocity dispersion. The delay is controllable by changing the wavelength and/or power of a control laser. The delay is generated by introducing a controllable wavelength shift to a pulse of light, propagating the pulse through a material or an optical component that generates a wavelength dependent time delay, and wavelength shifting again to return the pulse to its original wavelength.
    Type: Application
    Filed: March 17, 2006
    Publication date: February 26, 2009
    Inventors: Alexander Gaeta, Jay E. Sharping, Chris Xu
  • Patent number: 7483635
    Abstract: A method and apparatus for generating a multi-wavelength pulse train use a technique referred to as time-lens compression. The time-lens is formed of a phase modulator in series with a dispersion element. In addition to pulse compression, this time-lens simultaneously displaces the pulses according to their center wavelengths, resulting in a temporally evenly spaced multi-wavelength pulse train. An aberration correction technique, based on the temporal analog of a spatial correction lens, can also be employed improve the quality of the compressed pulses. Through use of CW DFB lasers and electrooptic phase modulators, the all-fiber system allows complete tunability of temporal spacing, spectral profile and repetition rate.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: January 27, 2009
    Assignee: Cornell Research Foundation, Inc.
    Inventor: Chris Xu
  • Publication number: 20080151238
    Abstract: A technique for simultaneous spatial and temporal focusing of femtosecond pulses improves the signal-to-back-ground ratio (SBR) in multiphoton imaging. This is achieved by spatially separating spectral components of pulses into a “rainbow beam” and recombining these components at the spatial focus of an imaging system. The temporal pulse width becomes a function of distance, with the shortest pulse width confined to the spatial focus. The technique can significantly improve the axial confinement and reduce the background excitation in multiphoton microscopy, and thereby increase the imaging depth in highly scattering biological specimens.
    Type: Application
    Filed: March 1, 2006
    Publication date: June 26, 2008
    Applicant: Cornell Research Foundation, Inc.
    Inventors: Guanghao Zhu, Chris Xu
  • Publication number: 20060018668
    Abstract: A method and apparatus for generating a multi-wavelength pulse train use a technique referred to as time-lens compression. The time-lens is formed of a phase modulator in series with a dispersion element. In addition to pulse compression, this time-lens simultaneously displaces the pulses according to their center wavelengths, resulting in a temporally evenly spaced multi-wavelength pulse train. An aberration correction technique, based on the temporal analog of a spatial correction lens, can also be employed improve the quality of the compressed pulses. Through use of CW DFB lasers and electrooptic phase modulators, the all-fiber system allows complete tunability of temporal spacing, spectral profile and repetition rate.
    Type: Application
    Filed: May 10, 2005
    Publication date: January 26, 2006
    Inventor: Chris Xu
  • Publication number: 20050286108
    Abstract: A programmable, ultrafast optical delay line based on reversible frequency conversion uses a time-prism pair and no moving parts. A first electro-optic phase modulator acting as a first time-prism shifts the frequency of an incoming pulse train. The pulse train passes through a dispersion element, such as a dispersive fiber, which delays the pulse train by an amount that is directly proportional to the magnitude of the frequency shift, which in turn is proportional to the magnitude of the phase modulator drive voltage. A second electro-optic phase modulator is driven ? out of phase to the first modulator and restores the frequency of the delayed pulse train to the original frequency of the incoming pulse train. To reduce pulse broadening effects and enhance performance further, soliton propagation inducing elements can be employed between the time-prisms.
    Type: Application
    Filed: May 6, 2005
    Publication date: December 29, 2005
    Inventors: Chris Xu, James Howe
  • Publication number: 20040097372
    Abstract: Solid and liquid pesticidal concentrate and spray compositions are described which exhibit enhanced efficacy due to the addition thereto of a compound which increases EPSPS enzyme inhibition by the pesticide, cell membrane permeability, or expression of hydroxyproline-rich glycoproteins.
    Type: Application
    Filed: August 29, 2003
    Publication date: May 20, 2004
    Applicant: Monsanto Technology LLC
    Inventors: William Abraham, Michael K. Stern, Jeffrey Alan Graham, Xiaodong Chris Xu, Ronald J. Brinker, Jeffrey N. Travers, Tracey L. Reynolds