Patents by Inventor Christer N. Dahlgren

Christer N. Dahlgren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11742099
    Abstract: Nuclear reactors have very few systems for significantly reduced failure possibilities. Nuclear reactors may be boiling water reactors with natural circulation-enabling heights and smaller, flexible energy outputs in the 0-350 megawatt-electric range. Reactors are fully surrounded by an impermeable, high-pressure containment. No coolant pools, heat sinks, active pumps, or other emergency fluid sources may be present inside containment; emergency cooling, like isolation condenser systems, are outside containment. Isolation valves integral with the reactor pressure vessel provide working and emergency fluid through containment to the reactor. Isolation valves are one-piece, welded, or otherwise integral with reactors and fluid conduits having ASME-compliance to eliminate risk of shear failure. Containment may be completely underground and seismically insulated to minimize footprint and above-ground target area.
    Type: Grant
    Filed: May 31, 2020
    Date of Patent: August 29, 2023
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
  • Publication number: 20230142980
    Abstract: Combined cleanup and heat sink systems work with nuclear reactor coolant loops. Combined systems may join hotter and colder sections of the coolant loops in parallel with any steam generator or other extractor and provide optional heat removal between the same. Combined systems also remove impurities or debris from a fluid coolant without significant heat loss from the coolant. A cooler in the combined system may increase in capacity or be augmented in number to move between purifying cooling and major heat removal from the coolant, potentially as an emergency cooler. The cooler may be joined to the hotter and colder sections through valved flow paths depending on desired functionality. Sections of the coolant loops may be fully above the cooler, which may be above the reactor, to drive flow by gravity and enhance isolation of sections of the coolant loop.
    Type: Application
    Filed: January 3, 2023
    Publication date: May 11, 2023
    Inventors: Derek Bass, Christer N. Dahlgren
  • Patent number: 11545274
    Abstract: Combined cleanup and heat sink systems work with nuclear reactor coolant loops. Combined systems may join hotter and colder sections of the coolant loops in parallel with any steam generator or other extractor and provide optional heat removal between the same. Combined systems also remove impurities or debris from a fluid coolant without significant heat loss from the coolant. A cooler in the combined system may increase in capacity or be augmented in number to move between purifying cooling and major heat removal from the coolant, potentially as an emergency cooler. The cooler may be joined to the hotter and colder sections through valved flow paths depending on desired functionality. Sections of the coolant loops may be fully above the cooler, which may be above the reactor, to drive flow by gravity and enhance isolation of sections of the coolant loop.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: January 3, 2023
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventors: Derek Bass, Christer N. Dahlgren
  • Patent number: 11380451
    Abstract: Simplified nuclear reactors include depressurization systems or gravity-driven injection systems or both. The systems depressurize and cool the reactor without operator intervention and power. An underground containment building may be used with the depressurization and injection systems passing through the same from above ground. Depressurization systems may use a rupture disk, relief line, pool, and filter to open the reactor and carry coolant away for condensation and exhausting. Injection systems may use a coolant tank above the nuclear reactor to inject liquid coolant by gravity into the reactor through an injection line and valve. The rupture disk and valve may be integral with the reactor and use penetration seals where systems pass through containment. Rupture disks and valves can actuate passively, at a pressure setpoint or other condition, through fluidic controls, setpoint failure, etc. The depressurization system and injection system together feed-and-bleed coolant through the reactor.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: July 5, 2022
    Assignee: GE-HITACHI NUCLEAR ENERGY AMERICAS LLC
    Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
  • Publication number: 20210090753
    Abstract: Combined cleanup and heat sink systems work with nuclear reactor coolant loops. Combined systems may join hotter and colder sections of the coolant loops in parallel with any steam generator or other extractor and provide optional heat removal between the same. Combined systems also remove impurities or debris from a fluid coolant without significant heat loss from the coolant. A cooler in the combined system may increase in capacity or be augmented in number to move between purifying cooling and major heat removal from the coolant, potentially as an emergency cooler. The cooler may be joined to the hotter and colder sections through valved flow paths depending on desired functionality. Sections of the coolant loops may be fully above the cooler, which may be above the reactor, to drive flow by gravity and enhance isolation of sections of the coolant loop.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 25, 2021
    Inventors: Derek Bass, Christer N. Dahlgren
  • Publication number: 20210082589
    Abstract: Nuclear reactors include isolation condenser systems that can be selectively connected with the reactor to provide desired cooling and pressure relief. Isolation condensers are immersed in a separate chamber holding coolant to which the condenser can transfer heat from the nuclear reactor. The chamber may selectively connect to an adjacent coolant reservoir for multiple isolation condensers. A check valve may permit coolant to flow only from the reservoir to the isolation condenser. A passive switch can operate the check valve and other isolating components. Isolation condensers can be activated by opening an inlet and outlet to/from the reactor for coolant flow. Fluidic controls and/or a pressure pulse transmitter may monitor reactor conditions and selectively activate individual isolation condensers by opening such flows. Isolation condenser systems may be positioned outside of containment in an underground silo with the containment, which may not have any other coolant source.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
  • Publication number: 20200395135
    Abstract: Pressure vessels have full penetrations that can be opened and closed with no separate valve piping or external valve. A projected volume from the vessel wall may house valve structures and flow path, and these structures may move with an external actuator. The flow path may extend both along and into the projected volume. Vessel walls may remain a minimum thickness even at the penetration, and any type of gates may be used with any degree of duplication. Penetrations may be formed by installing valve gates directly into the channel in the wall. The wall may be built outward into the projected volume by forging or welding additional pieces integrally machining the channel through the same volume and wall. Additional passages for gates and actuators may be machined into the projections as well. Pressure vessels may not require flanges at join points or material seams for penetration flow paths.
    Type: Application
    Filed: June 14, 2020
    Publication date: December 17, 2020
    Inventors: Christer N. Dahlgren, Gary M. Anthony, Joel P. Melito
  • Patent number: 10867712
    Abstract: Nuclear reactors include isolation condenser systems that can be selectively connected with the reactor to provide desired cooling and pressure relief. Isolation condensers are immersed in a separate chamber holding coolant to which the condenser can transfer heat from the nuclear reactor. The chamber may selectively connect to an adjacent coolant reservoir for multiple isolation condensers. A check valve may permit coolant to flow only from the reservoir to the isolation condenser. A passive switch can operate the check valve and other isolating components. Isolation condensers can be activated by opening an inlet and outlet to/from the reactor for coolant flow. Fluidic controls and/or a pressure pulse transmitter may monitor reactor conditions and selectively activate individual isolation condensers by opening such flows. Isolation condenser systems may be positioned outside of containment in an underground silo with the containment, which may not have any other coolant source.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: December 15, 2020
    Assignee: GE-HITACHI NUCLEAR ENERGY AMERICAS LLC
    Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
  • Publication number: 20200321136
    Abstract: Nuclear reactors have very few systems for significantly reduced failure possibilities. Nuclear reactors may be boiling water reactors with natural circulation-enabling heights and smaller, flexible energy outputs in the 0-350 megawatt-electric range. Reactors are fully surrounded by an impermeable, high-pressure containment. No coolant pools, heat sinks, active pumps, or other emergency fluid sources may be present inside containment; emergency cooling, like isolation condenser systems, are outside containment. Isolation valves integral with the reactor pressure vessel provide working and emergency fluid through containment to the reactor. Isolation valves are one-piece, welded, or otherwise integral with reactors and fluid conduits having ASME-compliance to eliminate risk of shear failure. Containment may be completely underground and seismically insulated to minimize footprint and above-ground target area.
    Type: Application
    Filed: May 31, 2020
    Publication date: October 8, 2020
    Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
  • Patent number: 10706973
    Abstract: Nuclear reactors have very few systems for significantly reduced failure possibilities. Nuclear reactors may be boiling water reactors with natural circulation-enabling heights and smaller, flexible energy outputs in the 0-350 megawatt-electric range. Reactors are fully surrounded by an impermeable, high-pressure containment. No coolant pools, heat sinks, active pumps, or other emergency fluid sources may be present inside containment; emergency cooling, like isolation condenser systems, are outside containment. Isolation valves integral with the reactor pressure vessel provide working and emergency fluid through containment to the reactor. Isolation valves are one-piece, welded, or otherwise integral with reactors and fluid conduits having ASME-compliance to eliminate risk of shear failure. Containment may be completely underground and seismically insulated to minimize footprint and above-ground target area.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: July 7, 2020
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
  • Publication number: 20200208517
    Abstract: Nuclear power plants include vertical shafts housing a reactor and plant equipment connected between the shafts. Shafts may be formed with VSM to nuclear standards, and a basemat may be poured at the bottom, which is compatible with reactor designs such as a simplified boiling water reactors, small modular reactors, advanced reactors and sodium cooled fast reactors. Additional plant systems may be placed in further shafts and connected through side-travelling tunnels that pass through the shafts. The plant may be segregated by safety class among different shafts. Floors, which may be modular and prefabricated with full equipment for delivery at the shaft, may be vertically lowered into appropriate shafts and seated to walls of the shaft. Equipment can be connected between floors by running connections along shaft walls.
    Type: Application
    Filed: December 31, 2018
    Publication date: July 2, 2020
    Inventors: Christer N. Dahlgren, Douglas B, McDonald, Tatjana B. Kirby, Gary M. Anthony
  • Publication number: 20190057785
    Abstract: Simplified nuclear reactors include depressurization systems or gravity-driven injection systems or both. The systems depressurize and cool the reactor without operator intervention and power. An underground containment building may be used with the depressurization and injection systems passing through the same from above ground. Depressurization systems may use a rupture disk, relief line, pool, and filter to open the reactor and carry coolant away for condensation and exhausting. Injection systems may use a coolant tank above the nuclear reactor to inject liquid coolant by gravity into the reactor through an injection line and valve. The rupture disk and valve may be integral with the reactor and use penetration seals where systems pass through containment. Rupture disks and valves can actuate passively, at a pressure setpoint or other condition, through fluidic controls, setpoint failure, etc. The depressurization system and injection system together feed-and-bleed coolant through the reactor.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 21, 2019
    Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
  • Publication number: 20190006052
    Abstract: Nuclear reactors include isolation condenser systems that can be selectively connected with the reactor to provide desired cooling and pressure relief. Isolation condensers are immersed in a separate chamber holding coolant to which the condenser can transfer heat from the nuclear reactor. The chamber may selectively connect to an adjacent coolant reservoir for multiple isolation condensers. A check valve may permit coolant to flow only from the reservoir to the isolation condenser. A passive switch can operate the check valve and other isolating components. Isolation condensers can be activated by opening an inlet and outlet to/from the reactor for coolant flow. Fluidic controls and/or a pressure pulse transmitter may monitor reactor conditions and selectively activate individual isolation condensers by opening such flows. Isolation condenser systems may be positioned outside of containment in an underground silo with the containment, which may not have any other coolant source.
    Type: Application
    Filed: June 28, 2017
    Publication date: January 3, 2019
    Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
  • Publication number: 20180322966
    Abstract: Nuclear reactors have very few systems for significantly reduced failure possibilities. Nuclear reactors may be boiling water reactors with natural circulation-enabling heights and smaller, flexible energy outputs in the 0-350 megawatt-electric range. Reactors are fully surrounded by an impermeable, high-pressure containment. No coolant pools, heat sinks, active pumps, or other emergency fluid sources may be present inside containment; emergency cooling, like isolation condenser systems, are outside containment. Isolation valves integral with the reactor pressure vessel provide working and emergency fluid through containment to the reactor. Isolation valves are one-piece, welded, or otherwise integral with reactors and fluid conduits having ASME-compliance to eliminate risk of shear failure. Containment may be completely underground and seismically insulated to minimize footprint and above-ground target area.
    Type: Application
    Filed: May 2, 2017
    Publication date: November 8, 2018
    Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino