Patents by Inventor Christer N. Dahlgren
Christer N. Dahlgren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240312650Abstract: Nuclear reactors have very few systems for significantly reduced failure possibilities. Nuclear reactors may be boiling water reactors with natural circulation-enabling heights and smaller, flexible energy outputs in the 0-350 megawatt-electric range. Reactors are fully surrounded by an impermeable, high-pressure containment. No coolant pools, heat sinks, active pumps, or other emergency fluid sources may be present inside containment; emergency cooling, like isolation condenser systems, are outside containment. Isolation valves integral with the reactor pressure vessel provide working and emergency fluid through containment to the reactor. Isolation valves are one-piece, welded, or otherwise integral with reactors and fluid conduits having ASME-compliance to eliminate risk of shear failure. Containment may be completely underground and seismically insulated to minimize footprint and above-ground target area.Type: ApplicationFiled: July 31, 2023Publication date: September 19, 2024Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
-
Patent number: 11742099Abstract: Nuclear reactors have very few systems for significantly reduced failure possibilities. Nuclear reactors may be boiling water reactors with natural circulation-enabling heights and smaller, flexible energy outputs in the 0-350 megawatt-electric range. Reactors are fully surrounded by an impermeable, high-pressure containment. No coolant pools, heat sinks, active pumps, or other emergency fluid sources may be present inside containment; emergency cooling, like isolation condenser systems, are outside containment. Isolation valves integral with the reactor pressure vessel provide working and emergency fluid through containment to the reactor. Isolation valves are one-piece, welded, or otherwise integral with reactors and fluid conduits having ASME-compliance to eliminate risk of shear failure. Containment may be completely underground and seismically insulated to minimize footprint and above-ground target area.Type: GrantFiled: May 31, 2020Date of Patent: August 29, 2023Assignee: GE-Hitachi Nuclear Energy Americas LLCInventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
-
Publication number: 20230142980Abstract: Combined cleanup and heat sink systems work with nuclear reactor coolant loops. Combined systems may join hotter and colder sections of the coolant loops in parallel with any steam generator or other extractor and provide optional heat removal between the same. Combined systems also remove impurities or debris from a fluid coolant without significant heat loss from the coolant. A cooler in the combined system may increase in capacity or be augmented in number to move between purifying cooling and major heat removal from the coolant, potentially as an emergency cooler. The cooler may be joined to the hotter and colder sections through valved flow paths depending on desired functionality. Sections of the coolant loops may be fully above the cooler, which may be above the reactor, to drive flow by gravity and enhance isolation of sections of the coolant loop.Type: ApplicationFiled: January 3, 2023Publication date: May 11, 2023Inventors: Derek Bass, Christer N. Dahlgren
-
Patent number: 11545274Abstract: Combined cleanup and heat sink systems work with nuclear reactor coolant loops. Combined systems may join hotter and colder sections of the coolant loops in parallel with any steam generator or other extractor and provide optional heat removal between the same. Combined systems also remove impurities or debris from a fluid coolant without significant heat loss from the coolant. A cooler in the combined system may increase in capacity or be augmented in number to move between purifying cooling and major heat removal from the coolant, potentially as an emergency cooler. The cooler may be joined to the hotter and colder sections through valved flow paths depending on desired functionality. Sections of the coolant loops may be fully above the cooler, which may be above the reactor, to drive flow by gravity and enhance isolation of sections of the coolant loop.Type: GrantFiled: September 25, 2019Date of Patent: January 3, 2023Assignee: GE-Hitachi Nuclear Energy Americas LLCInventors: Derek Bass, Christer N. Dahlgren
-
Patent number: 11380451Abstract: Simplified nuclear reactors include depressurization systems or gravity-driven injection systems or both. The systems depressurize and cool the reactor without operator intervention and power. An underground containment building may be used with the depressurization and injection systems passing through the same from above ground. Depressurization systems may use a rupture disk, relief line, pool, and filter to open the reactor and carry coolant away for condensation and exhausting. Injection systems may use a coolant tank above the nuclear reactor to inject liquid coolant by gravity into the reactor through an injection line and valve. The rupture disk and valve may be integral with the reactor and use penetration seals where systems pass through containment. Rupture disks and valves can actuate passively, at a pressure setpoint or other condition, through fluidic controls, setpoint failure, etc. The depressurization system and injection system together feed-and-bleed coolant through the reactor.Type: GrantFiled: August 15, 2017Date of Patent: July 5, 2022Assignee: GE-HITACHI NUCLEAR ENERGY AMERICAS LLCInventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
-
Publication number: 20210090753Abstract: Combined cleanup and heat sink systems work with nuclear reactor coolant loops. Combined systems may join hotter and colder sections of the coolant loops in parallel with any steam generator or other extractor and provide optional heat removal between the same. Combined systems also remove impurities or debris from a fluid coolant without significant heat loss from the coolant. A cooler in the combined system may increase in capacity or be augmented in number to move between purifying cooling and major heat removal from the coolant, potentially as an emergency cooler. The cooler may be joined to the hotter and colder sections through valved flow paths depending on desired functionality. Sections of the coolant loops may be fully above the cooler, which may be above the reactor, to drive flow by gravity and enhance isolation of sections of the coolant loop.Type: ApplicationFiled: September 25, 2019Publication date: March 25, 2021Inventors: Derek Bass, Christer N. Dahlgren
-
Publication number: 20210082589Abstract: Nuclear reactors include isolation condenser systems that can be selectively connected with the reactor to provide desired cooling and pressure relief. Isolation condensers are immersed in a separate chamber holding coolant to which the condenser can transfer heat from the nuclear reactor. The chamber may selectively connect to an adjacent coolant reservoir for multiple isolation condensers. A check valve may permit coolant to flow only from the reservoir to the isolation condenser. A passive switch can operate the check valve and other isolating components. Isolation condensers can be activated by opening an inlet and outlet to/from the reactor for coolant flow. Fluidic controls and/or a pressure pulse transmitter may monitor reactor conditions and selectively activate individual isolation condensers by opening such flows. Isolation condenser systems may be positioned outside of containment in an underground silo with the containment, which may not have any other coolant source.Type: ApplicationFiled: November 30, 2020Publication date: March 18, 2021Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
-
Publication number: 20200395135Abstract: Pressure vessels have full penetrations that can be opened and closed with no separate valve piping or external valve. A projected volume from the vessel wall may house valve structures and flow path, and these structures may move with an external actuator. The flow path may extend both along and into the projected volume. Vessel walls may remain a minimum thickness even at the penetration, and any type of gates may be used with any degree of duplication. Penetrations may be formed by installing valve gates directly into the channel in the wall. The wall may be built outward into the projected volume by forging or welding additional pieces integrally machining the channel through the same volume and wall. Additional passages for gates and actuators may be machined into the projections as well. Pressure vessels may not require flanges at join points or material seams for penetration flow paths.Type: ApplicationFiled: June 14, 2020Publication date: December 17, 2020Inventors: Christer N. Dahlgren, Gary M. Anthony, Joel P. Melito
-
Patent number: 10867712Abstract: Nuclear reactors include isolation condenser systems that can be selectively connected with the reactor to provide desired cooling and pressure relief. Isolation condensers are immersed in a separate chamber holding coolant to which the condenser can transfer heat from the nuclear reactor. The chamber may selectively connect to an adjacent coolant reservoir for multiple isolation condensers. A check valve may permit coolant to flow only from the reservoir to the isolation condenser. A passive switch can operate the check valve and other isolating components. Isolation condensers can be activated by opening an inlet and outlet to/from the reactor for coolant flow. Fluidic controls and/or a pressure pulse transmitter may monitor reactor conditions and selectively activate individual isolation condensers by opening such flows. Isolation condenser systems may be positioned outside of containment in an underground silo with the containment, which may not have any other coolant source.Type: GrantFiled: June 28, 2017Date of Patent: December 15, 2020Assignee: GE-HITACHI NUCLEAR ENERGY AMERICAS LLCInventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
-
Publication number: 20200321136Abstract: Nuclear reactors have very few systems for significantly reduced failure possibilities. Nuclear reactors may be boiling water reactors with natural circulation-enabling heights and smaller, flexible energy outputs in the 0-350 megawatt-electric range. Reactors are fully surrounded by an impermeable, high-pressure containment. No coolant pools, heat sinks, active pumps, or other emergency fluid sources may be present inside containment; emergency cooling, like isolation condenser systems, are outside containment. Isolation valves integral with the reactor pressure vessel provide working and emergency fluid through containment to the reactor. Isolation valves are one-piece, welded, or otherwise integral with reactors and fluid conduits having ASME-compliance to eliminate risk of shear failure. Containment may be completely underground and seismically insulated to minimize footprint and above-ground target area.Type: ApplicationFiled: May 31, 2020Publication date: October 8, 2020Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
-
Patent number: 10706973Abstract: Nuclear reactors have very few systems for significantly reduced failure possibilities. Nuclear reactors may be boiling water reactors with natural circulation-enabling heights and smaller, flexible energy outputs in the 0-350 megawatt-electric range. Reactors are fully surrounded by an impermeable, high-pressure containment. No coolant pools, heat sinks, active pumps, or other emergency fluid sources may be present inside containment; emergency cooling, like isolation condenser systems, are outside containment. Isolation valves integral with the reactor pressure vessel provide working and emergency fluid through containment to the reactor. Isolation valves are one-piece, welded, or otherwise integral with reactors and fluid conduits having ASME-compliance to eliminate risk of shear failure. Containment may be completely underground and seismically insulated to minimize footprint and above-ground target area.Type: GrantFiled: May 2, 2017Date of Patent: July 7, 2020Assignee: GE-Hitachi Nuclear Energy Americas LLCInventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
-
Publication number: 20200208517Abstract: Nuclear power plants include vertical shafts housing a reactor and plant equipment connected between the shafts. Shafts may be formed with VSM to nuclear standards, and a basemat may be poured at the bottom, which is compatible with reactor designs such as a simplified boiling water reactors, small modular reactors, advanced reactors and sodium cooled fast reactors. Additional plant systems may be placed in further shafts and connected through side-travelling tunnels that pass through the shafts. The plant may be segregated by safety class among different shafts. Floors, which may be modular and prefabricated with full equipment for delivery at the shaft, may be vertically lowered into appropriate shafts and seated to walls of the shaft. Equipment can be connected between floors by running connections along shaft walls.Type: ApplicationFiled: December 31, 2018Publication date: July 2, 2020Inventors: Christer N. Dahlgren, Douglas B, McDonald, Tatjana B. Kirby, Gary M. Anthony
-
Publication number: 20190057785Abstract: Simplified nuclear reactors include depressurization systems or gravity-driven injection systems or both. The systems depressurize and cool the reactor without operator intervention and power. An underground containment building may be used with the depressurization and injection systems passing through the same from above ground. Depressurization systems may use a rupture disk, relief line, pool, and filter to open the reactor and carry coolant away for condensation and exhausting. Injection systems may use a coolant tank above the nuclear reactor to inject liquid coolant by gravity into the reactor through an injection line and valve. The rupture disk and valve may be integral with the reactor and use penetration seals where systems pass through containment. Rupture disks and valves can actuate passively, at a pressure setpoint or other condition, through fluidic controls, setpoint failure, etc. The depressurization system and injection system together feed-and-bleed coolant through the reactor.Type: ApplicationFiled: August 15, 2017Publication date: February 21, 2019Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
-
Publication number: 20190006052Abstract: Nuclear reactors include isolation condenser systems that can be selectively connected with the reactor to provide desired cooling and pressure relief. Isolation condensers are immersed in a separate chamber holding coolant to which the condenser can transfer heat from the nuclear reactor. The chamber may selectively connect to an adjacent coolant reservoir for multiple isolation condensers. A check valve may permit coolant to flow only from the reservoir to the isolation condenser. A passive switch can operate the check valve and other isolating components. Isolation condensers can be activated by opening an inlet and outlet to/from the reactor for coolant flow. Fluidic controls and/or a pressure pulse transmitter may monitor reactor conditions and selectively activate individual isolation condensers by opening such flows. Isolation condenser systems may be positioned outside of containment in an underground silo with the containment, which may not have any other coolant source.Type: ApplicationFiled: June 28, 2017Publication date: January 3, 2019Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino
-
Publication number: 20180322966Abstract: Nuclear reactors have very few systems for significantly reduced failure possibilities. Nuclear reactors may be boiling water reactors with natural circulation-enabling heights and smaller, flexible energy outputs in the 0-350 megawatt-electric range. Reactors are fully surrounded by an impermeable, high-pressure containment. No coolant pools, heat sinks, active pumps, or other emergency fluid sources may be present inside containment; emergency cooling, like isolation condenser systems, are outside containment. Isolation valves integral with the reactor pressure vessel provide working and emergency fluid through containment to the reactor. Isolation valves are one-piece, welded, or otherwise integral with reactors and fluid conduits having ASME-compliance to eliminate risk of shear failure. Containment may be completely underground and seismically insulated to minimize footprint and above-ground target area.Type: ApplicationFiled: May 2, 2017Publication date: November 8, 2018Inventors: Brian S. Hunt, Christer N. Dahlgren, Wayne Marquino