Patents by Inventor Christian Ammann
Christian Ammann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250160901Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: ApplicationFiled: January 17, 2025Publication date: May 22, 2025Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Patent number: 12251137Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: GrantFiled: October 10, 2023Date of Patent: March 18, 2025Assignee: DePuy Synthes Products, Inc.Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Publication number: 20240032970Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: ApplicationFiled: October 10, 2023Publication date: February 1, 2024Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Patent number: 11812998Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: GrantFiled: August 26, 2021Date of Patent: November 14, 2023Assignee: DePuy Synthes Products, Inc.Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Publication number: 20210378715Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: ApplicationFiled: August 26, 2021Publication date: December 9, 2021Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Patent number: 11134992Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: GrantFiled: June 7, 2019Date of Patent: October 5, 2021Assignee: DePuy Synthes Products, Inc.Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Publication number: 20190282278Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: ApplicationFiled: June 7, 2019Publication date: September 19, 2019Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Patent number: 10357287Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: GrantFiled: December 8, 2017Date of Patent: July 23, 2019Assignee: DePuy Synthes Products, Inc.Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Publication number: 20180098796Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: ApplicationFiled: December 8, 2017Publication date: April 12, 2018Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Patent number: 9872710Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: GrantFiled: February 18, 2016Date of Patent: January 23, 2018Assignee: DePuy Synthes Products, Inc.Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Publication number: 20160157894Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: ApplicationFiled: February 18, 2016Publication date: June 9, 2016Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Patent number: 9282998Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor (10), a body (20) with a rod-receiving channel, an insert member (40) (preferably a bushing), and a locking cap with a saddle (70). The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: GrantFiled: September 4, 2009Date of Patent: March 15, 2016Assignee: DePuy Synthes Products, Inc.Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Publication number: 20110160779Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor (10), a body (20) with a rod-receiving channel, an insert member (40) (preferably a bushing), and a locking cap with a saddle (70). The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: ApplicationFiled: September 4, 2009Publication date: June 30, 2011Applicant: Synthes USA, LLCInventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin