Patents by Inventor Christian C. Honeker

Christian C. Honeker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8648136
    Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: February 11, 2014
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Christian C. Honeker, Yigal Dov Blum, David Brent MacQueen
  • Publication number: 20130005878
    Abstract: A composition includes a) a melt processable polymer including at least one chemical moiety having a partial charge; and b) a nucleating agent having a surface charge that is opposite the partial charge of the chemical moiety of the polymer, wherein the nucleating agent accelerates the rate of crystallization of the melt processable polymer; wherein the nucleating agent has a melting point greater than the melting point of the melt processable polymer. In an embodiment, a method of making the composition is also provided.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 3, 2013
    Applicants: UNIVERSITY OF MASSACHUSETTS, SAINT-GOBAIN PERFORMANCE PLASTICS CORPORATION
    Inventors: Shaw Ling Hsu, Ying Wu, Christian C. Honeker, David J. Bravet, Darryl William
  • Publication number: 20120319053
    Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
    Type: Application
    Filed: August 24, 2012
    Publication date: December 20, 2012
    Inventors: Nobuyuki Kambe, Christian C. Honeker, Yigal Dov Blum, David Brent MacQueen
  • Publication number: 20120282437
    Abstract: A textured film is provided. The textured film includes a first layer forming an outer surface and including a fluoropolymer. A second layer includes an encapsulant layer. The first layer and the second layer are mechanically textured to provide a plurality of surface features on the outer surface and extend into the second layer. The film can be applied as a textured film overlying an active component of a photovoltaic device.
    Type: Application
    Filed: August 29, 2011
    Publication date: November 8, 2012
    Applicant: SAINT-GOBAIN PERFORMANCE PLASTICS CORPORATION
    Inventors: Sarah L. Clark, Nikhil N. Bhiwankar, Yu Zhong, Vignesh Rajamani, Gowri Dorairaju, Christian C. Honeker, Jean-Philippe Mulet, Mathieu Berard
  • Publication number: 20120080085
    Abstract: A film has an inner and an outer surface. The film includes a first layer forming the outer surface and including fluoropolymer. The film further includes a second layer disposed away from the outer surface comprising a polymer. The polymer can have a storage modulus at 65° C. of at least 5 MPa. The film has a plurality of surface features forming the outer surface and extending into the first and second layers. The surface features have a mean slope of at least 15°. The film can be applied as a protective film overlying an active component of a photovoltaic device.
    Type: Application
    Filed: August 29, 2011
    Publication date: April 5, 2012
    Applicant: SAINT-GOBAIN PERFORMANCE PLASTICS CORPORATION
    Inventors: Christian C. HONEKER, Robert L. Febonio, Jean-Philippe Mulet, Mathieu Berard
  • Publication number: 20110247686
    Abstract: A multilayer film includes a functional portion including one or more layers, an adhesive layer overlying a major surface of the functional portion, and a fluoropolymer layer overlying a major surface of the adhesive layer opposite the functional portion. The fluoropolymer layer includes a fluoropolymer. The adhesive layer includes an adhesive and an ultraviolet radiation absorber.
    Type: Application
    Filed: March 11, 2011
    Publication date: October 13, 2011
    Applicant: SAINT-GOBAIN PERFORMANCE PLASTICS CORPORATION
    Inventors: Christian C. Honeker, Maryann C. Kenney, Julia DiCorleto Gibson, Keith C. Hong
  • Publication number: 20110017952
    Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
    Type: Application
    Filed: October 5, 2010
    Publication date: January 27, 2011
    Inventors: Nobuyuki Kambe, Christian C. Honeker, Yigal Dov Blum, David Brent MacQueen
  • Patent number: 7816439
    Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: October 19, 2010
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Christian C. Honeker, Yigal Dov Blum, David Brent MacQueen
  • Patent number: 7776406
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: August 17, 2010
    Assignee: NeoPhotonics Corporation
    Inventors: Craig R. Horne, Pierre J. DeMascarel, Christian C. Honeker, Benjamin Chaloner-Gill, Herman A. Lopez, Xiangxin Bi, Ronald J. Mosso, William E. McGovern, James T. Gardner, Sujeet Kumar, James A. Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Publication number: 20090053529
    Abstract: A roofing material includes a bitumen sheet material and a multilayer capping film. The multilayer capping film includes a first layer comprising a first fluoropolymer and a second layer underlying the first layer. The second layer includes at least 40 wt % of a second fluoropolymer and not greater than 60 wt % of an acrylic polymer. The second layer of the multilayer capping film overlies the bitumen sheet material and the first layer of the multilayer capping film forms an outer surface of the roofing material.
    Type: Application
    Filed: August 21, 2008
    Publication date: February 26, 2009
    Applicant: SAINT-GOBAIN PERFORMANCE PLASTICS CORPORATION
    Inventors: Maryann C. Kenney, Gwo S. Swei, Giorgio Bortolotto, Christian C. Honeker
  • Patent number: 7306845
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: December 11, 2007
    Assignee: NeoPhotonics Corporation
    Inventors: Craig R. Horne, Pierre J. DeMascarel, Christian C. Honeker, Benjamin Chaloner-Gill, Herman A. Lopez, Xiangxin Bi, Ronald J. Mosso, William E. McGovern, James T. Gardner, Sujeet Kumar, James A. Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Patent number: 7226966
    Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: June 5, 2007
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Christian C. Honeker
  • Patent number: 6849334
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: February 1, 2005
    Assignee: NeoPhotonics Corporation
    Inventors: Craig R. Horne, Pierre J. DeMascarel, Christian C. Honeker, Benjamin Chaloner-Gill, Herman A. Lopez, Xiangxin Bi, Ronald J. Mosso, William E. McGovern, James T. Gardner, Sujeet Kumar, James A. Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Publication number: 20030118841
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Application
    Filed: March 15, 2002
    Publication date: June 26, 2003
    Inventors: Craig R. Horne, Peirre J. DeMascarel, Christian C. Honeker, Benjamin Chaloner-Gill, Herman A. Lopez, Xiangxin Bi, Ronald J. Mosso, William E. McGovern, James T. Gardner, Sujeet Kumar, James A. Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Publication number: 20030031438
    Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
    Type: Application
    Filed: February 25, 2002
    Publication date: February 13, 2003
    Inventors: Nobuyuki Kambe, Christian C. Honeker