Patents by Inventor Christian CARLOWITZ

Christian CARLOWITZ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11784718
    Abstract: A system for creating an adjustable delay in an optical signal. The system has an input interface for receiving an optical input signal. The system has a first optical modulator configured to shift the frequency of the optical input signal depending on a setting of the first optical modulator, thereby generating a modulated optical signal. The system includes at least two frequency selective reflectors configured to reflect the modulated optical signal, thereby providing a reflected signal. The system has a control circuit that adapts the setting of the first optical modulator such that a frequency shift of the optical input signal introduced by the first optical modulator is set by the control circuit. The frequency shift introduced by the first optical modulator corresponds to an operational frequency of one of the at least two frequency selective reflectors associated with the setting of the first optical modulator.
    Type: Grant
    Filed: October 12, 2022
    Date of Patent: October 10, 2023
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Benedikt Simper, Martin Vossiek, Christian Carlowitz, Peter Tschapek
  • Publication number: 20230057336
    Abstract: A LIDAR target simulation system for testing a LIDAR device is described. The LIDAR target simulation system includes a scenario generation circuit, a pattern detection circuit, a LIDAR simulation circuit, and a signal response generator circuit. The scenario generation circuit is configured to generate a test scenario for testing the LIDAR device. The pattern detection circuit is configured to receive at least one scan signal generated by the LIDAR device to be tested. The pattern detection circuit further is configured to determine at least one characteristic parameter of the received scan signal. The LIDAR simulation circuit is configured to simulate at least one current and/or future scan signal of the LIDAR device based on the at least one characteristic parameter. The signal response generator circuit is configured to generate a response signal to be received by the LIDAR device based on the at least one simulated scan signal of the LIDAR device and based on the test scenario.
    Type: Application
    Filed: July 15, 2022
    Publication date: February 23, 2023
    Applicant: Rohde & Schwarz GmbH & Co. KG
    Inventors: Benedikt Simper, Martin Vossiek, Georg Körner, Christian Carlowitz, Christoph Birkenhauer, Peter Tschapek
  • Publication number: 20230036960
    Abstract: A system for creating an adjustable delay in an optical signal. The system has an input interface for receiving an optical input signal. The system has a first optical modulator configured to shift the frequency of the optical input signal depending on a setting of the first optical modulator, thereby generating a modulated optical signal. The system includes at least two frequency selective reflectors configured to reflect the modulated optical signal, thereby providing a reflected signal. The system has a control circuit that adapts the setting of the first optical modulator such that a frequency shift of the optical input signal introduced by the first optical modulator is set by the control circuit. The frequency shift introduced by the first optical modulator corresponds to an operational frequency of one of the at least two frequency selective reflectors associated with the setting of the first optical modulator.
    Type: Application
    Filed: October 12, 2022
    Publication date: February 2, 2023
    Applicant: Rohde & Schwarz GmbH & Co. KG
    Inventors: Benedikt Simper, Martin Vossiek, Christian Carlowitz, Peter Tschapek
  • Patent number: 11502755
    Abstract: A system for creating an adjustable delay in an optical signal. The system has an input interface for receiving an optical input signal. The system has a first optical modulator configured to shift the frequency of the optical input signal depending on a setting of the first optical modulator, thereby generating a modulated optical signal. The system includes at least two frequency selective reflectors configured to reflect the modulated optical signal, thereby providing a reflected signal. The system has a control circuit that adapts the setting of the first optical modulator such that a frequency shift of the optical input signal introduced by the first optical modulator is set by the control circuit. The frequency shift introduced by the first optical modulator corresponds to an operational frequency of one of the at least two frequency selective reflectors associated with the setting of the first optical modulator.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: November 15, 2022
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Benedikt Simper, Martin Vossiek, Christian Carlowitz, Peter Tschapek
  • Publication number: 20220311518
    Abstract: A system for creating an adjustable delay in an optical signal. The system has an input interface for receiving an optical input signal. The system has a first optical modulator configured to shift the frequency of the optical input signal depending on a setting of the first optical modulator, thereby generating a modulated optical signal. The system includes at least two frequency selective reflectors configured to reflect the modulated optical signal, thereby providing a reflected signal. The system has a control circuit that adapts the setting of the first optical modulator such that a frequency shift of the optical input signal introduced by the first optical modulator is set by the control circuit. The frequency shift introduced by the first optical modulator corresponds to an operational frequency of one of the at least two frequency selective reflectors associated with the setting of the first optical modulator.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 29, 2022
    Applicant: Rohde & Schwarz GmbH & Co. KG
    Inventors: Benedikt Simper, Martin Vossiek, Christian Carlowitz, Peter Tschapek
  • Patent number: 11300659
    Abstract: A radar target simulator for simulating radar targets is provided. The radar target simulator has an analogue-to-digital converter having a first clock generator and a digital-to-analogue converter having a second clock generator. The analogue-to-digital converter is configured to receive a radar signal transmitted by a radar system as an input signal, while the digital-to-analogue converter is configured to return an output signal to the radar system for simulation of the radar target. Further, the first and the second clock generator are configured to operate the analogue-to-digital converter and the digital-to-analogue converter at a different sampling rate in each case.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: April 12, 2022
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Sherif Ahmed, Julian Adametz, Martin Vossiek, Georg Körner, Christian Carlowitz
  • Publication number: 20220107389
    Abstract: A radar target simulator with no lower target distance limitation and continuous distance emulation is provided. Said radar target simulator comprises a receiving unit configured to receive a radar signal from a radar under test and to provide a corresponding receive signal, and a ramp slope estimating unit. In this context, the ramp slope estimating unit is configured to track the ramp slope of the radar under test on the basis of the receive signal.
    Type: Application
    Filed: October 26, 2020
    Publication date: April 7, 2022
    Inventors: Christoph BIRKENHAUER, Gerhard HAMBERGER, Matthias BEER, Maximilian BOGNER, Steffen NEIDHARDT, Benedikt SIMPER, Marius BRINKMANN, Christian CARLOWITZ, Patrick STIEF, Georg Körner
  • Publication number: 20200110156
    Abstract: A radar target simulator for simulating radar targets is provided. The radar target simulator has an analogue-to-digital converter having a first clock generator and a digital-to-analogue converter having a second clock generator. The analogue-to-digital converter is configured to receive a radar signal transmitted by a radar system as an input signal, while the digital-to-analogue converter is configured to return an output signal to the radar system for simulation of the radar target. Further, the first and the second clock generator are configured to operate the analogue-to-digital converter and the digital-to-analogue converter at a different sampling rate in each case.
    Type: Application
    Filed: June 6, 2019
    Publication date: April 9, 2020
    Inventors: Sherif AHMED, Julian ADAMETZ, Martin VOSSIEK, Georg KÖRNER, Christian CARLOWITZ