Patents by Inventor Christian Cousin

Christian Cousin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200130692
    Abstract: A method for controlling a propulsion system of a motor vehicle includes: optimizing both torque control and fuel economy during transient operating conditions; performing a steady state control enable function to identify when steady state operating conditions are present including: determining a commanded axle torque; obtaining a measured actual axle torque; and identifying when the commanded axle torque is substantially equal to the measured actual axle torque and outputting a signal; and further includes: directing the signal output from the control enable function to each of an integral action calculator and a Ym filter; performing an integral action calculation to identify an axle torque integral action; and setting a steady state flag when steady state operating conditions are present which fixes system variables directed to optimizing torque control, temporarily ceasing further optimization of torque control when the steady state flag is set.
    Type: Application
    Filed: October 30, 2018
    Publication date: April 30, 2020
    Inventors: Michael Livshiz, Bharath Pattipati, Michael T. Sarzynski, Jean-Christian Cousin
  • Patent number: 10563549
    Abstract: A friction loss management system for an engine, comprises a combustion engine comprising a crankshaft and a plurality of cylinders, a reciprocating piston assembly connected to the crankshaft, a fuel injector connected to an injection controller, an intake valve connected to an intake valve controller, and an exhaust valve connected to an exhaust valve controller. A control unit comprises at least one set of control algorithms configured to receive engine power demand data, and determine a number of cylinders of the plurality of cylinders for deactivation based on the received engine power demand data and further based on sensed or stored friction values for the plurality of cylinders. Determining the number of cylinders of for deactivation minimizes friction between the plurality of cylinders and their respective reciprocating piston assembly by selecting a cylinder combination of active cylinders and deactivated cylinders with the lowest total friction while meeting engine power demand.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: February 18, 2020
    Assignee: Eaton Intelligent Power Limited
    Inventors: James E McCarthy, Jr., Douglas J Nielsen, Christian Cousin
  • Patent number: 10526934
    Abstract: A friction loss management system for an engine, comprises a combustion engine comprising a crankshaft and a plurality of cylinders, a reciprocating piston assembly connected to the crankshaft, a fuel injector connected to an injection controller, an intake valve connected to an intake valve controller, and an exhaust valve connected to an exhaust valve controller. A control unit comprises at least one set of control algorithms configured to receive engine power demand data, and determine a number of cylinders of the plurality of cylinders for deactivation based on the received engine power demand data and further based on sensed or stored friction values for the plurality of cylinders. Determining the number of cylinders of for deactivation minimizes friction between the plurality of cylinders and their respective reciprocating piston assembly by selecting a cylinder combination of active cylinders and deactivated cylinders with the lowest total friction while meeting engine power demand.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: January 7, 2020
    Assignee: Eaton Intelligent Power Limited
    Inventors: James E McCarthy, Jr., Douglas J Nielsen, Christian Cousin
  • Publication number: 20180298794
    Abstract: A friction loss management system for an engine, comprises a combustion engine comprising a crankshaft and a plurality of cylinders, a reciprocating piston assembly connected to the crankshaft, a fuel injector connected to an injection controller, an intake valve connected to an intake valve controller, and an exhaust valve connected to an exhaust valve controller. A control unit comprises at least one set of control algorithms configured to receive engine power demand data, and determine a number of cylinders of the plurality of cylinders for deactivation based on the received engine power demand data and further based on sensed or stored friction values for the plurality of cylinders. Determining the number of cylinders of for deactivation minimizes friction between the plurality of cylinders and their respective reciprocating piston assembly by selecting a cylinder combination of active cylinders and deactivated cylinders with the lowest total friction while meeting engine power demand.
    Type: Application
    Filed: March 26, 2018
    Publication date: October 18, 2018
    Inventors: James E. McCarthy, JR., Douglas J. Nielsen, Christian Cousin
  • Publication number: 20180274457
    Abstract: A friction loss management system for an engine, comprises a combustion engine comprising a crankshaft and a plurality of cylinders, a reciprocating piston assembly connected to the crankshaft, a fuel injector connected to an injection controller, an intake valve connected to an intake valve controller, and an exhaust valve connected to an exhaust valve controller. A control unit comprises at least one set of control algorithms configured to receive engine power demand data, and determine a number of cylinders of the plurality of cylinders for deactivation based on the received engine power demand data and further based on sensed or stored friction values for the plurality of cylinders. Determining the number of cylinders of for deactivation minimizes friction between the plurality of cylinders and their respective reciprocating piston assembly by selecting a cylinder combination of active cylinders and deactivated cylinders with the lowest total friction while meeting engine power demand.
    Type: Application
    Filed: September 23, 2016
    Publication date: September 27, 2018
    Inventors: James E McCarthy, JR., Douglas J Nielsen, Christian Cousin