Patents by Inventor Christian Däschlein
Christian Däschlein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240301147Abstract: A process can be used for production of trans-polyoctenamer-graphene composite material having a high filler content, from a trans-polyoctenamer and graphene material. The highly filled trans-polyoctenamer-graphene composite material is useful, for example, in the automotive sector, in heat exchangers, in housings, encapsulations, plain bearings, in 3-D printing heads for heat removal, injection moulded parts, electronics applications, hose systems, membranes, fuel cells, cable systems, indoor and sports apparel, EM protection, and orthopaedics.Type: ApplicationFiled: December 23, 2021Publication date: September 12, 2024Applicant: EVONIK OPERATIONS GMBHInventors: Valeri LEICH, Alexander Paasche, Stefan Schumann, Dorothea Spannenkrebs, Alexey Merkulov, Verena Breuers, Christian Däschlein, Uwe Paulmann, Jonas Hönig
-
Patent number: 11993729Abstract: The presently claimed subject matter is directed to a chemical mechanical polishing (CMP) composition comprising inorganic particles, at least one organic compound comprising an amino group and/or at least one acid group (Y), potassium persulfate, at least one corrosion inhibitor and an aqueous medium for polishing substrates of the semiconductor industry comprising cobalt and/or a cobalt alloy and TiN and/or TaN.Type: GrantFiled: November 12, 2018Date of Patent: May 28, 2024Assignee: BASF SEInventors: Christian Daeschlein, Max Siebert, Yongqing Lan, Michael Lauter, Sheik Ansar Usman Ibrahim, Reza M Golzarian, Te Yu Wei, Haci Osman Guevenc, Julian Proelss, Leonardus Leunissen
-
Publication number: 20240034855Abstract: Nanoparticle compositions contain a graphene-based material. A preparation process involves providing several components and milling a mixture. The nanoparticle compositions can be used as a lubricant additive to improve tribological performance, in particular to improve anti-friction and anti-wear performance on metal parts. A corresponding lubricant composition contains these nanoparticle compositions.Type: ApplicationFiled: August 11, 2021Publication date: February 1, 2024Applicant: Evonik Operations GmbHInventors: Verena BREUERS, Daniel Neß, Stephan Wieber, Valeri Leich, Jonas Hönig, Michael Gerhard Hagemann, Willibald Wombacher, Christian Däschlein
-
Publication number: 20220089448Abstract: A method prepares hydridosilane oligomers, where the obtainable hydridosilane oligomers are useful. A method can also be used for preparing coating compositions and for preparing a silicon-containing layer.Type: ApplicationFiled: November 28, 2019Publication date: March 24, 2022Applicant: Evonik Operations GmbHInventors: Michael Holthausen, Maximilian Roccaro, Anna Pougin, Daniel Schmitt, Jörg Zöllner, Christian Däschlein, Odo Wunnicke
-
Patent number: 11142625Abstract: The invention relates to a process for production of expanded thermoplastic elastomer, said process comprising the steps of: (e) adding monomers and/or oligomers used for producing the thermoplastic elastomer with or without further starting materials into a first stage of a polymer-processing machine, (f) mixing the monomers and/or oligomers and also the optionally added further starting materials and reacting the monomers and/or oligomers to give a polymer melt in the first stage of the polymer-processing machine, (g) passing the polymer melt into a second stage of a polymer-processing machine and adding a physical blowing agent with or without further starting materials to obtain a polymer melt comprising a blowing agent, (h) molding the polymer melt comprising a blowing agent into an expanded thermoplastic elastomer.Type: GrantFiled: October 17, 2014Date of Patent: October 12, 2021Assignee: BASF SEInventors: Peter Gutmann, Christian Däschlein, Jürgen Ahlers, Elke Marten, Torben Kaminsky, Dirk Kempfert
-
Patent number: 10865361Abstract: Described is a post chemical-mechanical-polishing (post-CMP) cleaning composition comprising or consisting of: (A) one or more water-soluble nonionic copolymers of the general formula (I) and mixtures thereof, formula (I) wherein R1 and R3 are independently from each other hydrogen, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-Butyl, or sec-butyl, R2 is methyl and x and y are an integer, 1 (B)poly(acrylic acid) (PAA) or acrylic acid-maleic acid copolymer with a mass average molar mass (Mw) of up to 10,000 g/mol, and (C) water, wherein the pH of the composition is in the range of from 7.0 to 10.5.Type: GrantFiled: May 31, 2017Date of Patent: December 15, 2020Assignee: BASF SEInventors: Christian Daeschlein, Max Siebert, Michael Lauter, Leonardus Leunissen, Ivan Garcia Romero, Haci Osman Guevenc, Peter Przybylski, Julian Proelss, Andreas Klipp
-
Patent number: 10844325Abstract: A post chemical-mechanical-polishing (post-CMP) cleaning composition including: (A) polyethylene glycol (PEG) with a mass average molar mass (Mw) in the range of from 400 to 8,000 g/mol, (B) an anionic polymer selected from poly(acrylic acid) (PAA), acrylic acid-maleic acid copolymers, polyaspartic acid (PASA), polyglutamic acid (PGA), polyvinylphosphonic acid, polyvinylsulfonic acid, poly(styrenesulfonic acid), polycarboxylate ethers (PCE), PEG-phosphorous acids, and copolymers of the polymers thereof, and (C) water, where the pH of the composition is from 7.0 to 10.5.Type: GrantFiled: December 20, 2016Date of Patent: November 24, 2020Assignee: BASF SEInventors: Christian Daeschlein, Max Siebert, Michael Lauter, Peter Przybylski, Julian Proelss, Andreas Klipp, Haci Osman Guevenc, Leonardus Leunissen, Roelf-Peter Baumann, Te Yu Wei
-
Patent number: 10844333Abstract: Described is a post chemical-mechanical-polishing (post-CMP) cleaning composition comprising or consisting of: (A) one or more nonionic polymers selected from the group consisting of poly-acrylamides, polyhydroxyethyl(meth)acrylates (PHE(M)A), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polymers of formula (I), and mixtures thereof, wherein R1 is hydrogen, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, or sec-butyl, R2 is hydrogen or methyl, and n is an integer, (B) poly(acrylic acid) (PAA) or acrylic acid-maleic acid copolymer with a mass average molar mass (Mw) of up to 10,000 g/mol, and (C) water, wherein the pH of the composition is in the range of from 7.0 to 10.5.Type: GrantFiled: December 20, 2016Date of Patent: November 24, 2020Assignee: BASF SEInventors: Christian Daeschlein, Max Siebert, Michael Lauter, Piotr Przybylski, Julian Proelss, Andreas Klipp, Haci Osman Guevenc, Leonardos Leunissen, Roelf-Peter Baumann, Te Yu Wei
-
Publication number: 20200299547Abstract: The presently claimed subject matter is directed to a chemical mechanical polishing (CMP) composition comprising inorganic particles, at least one organic compound comprising an amino group and/or at least one acid group (Y), potassium persulfate, at least one corrosion inhibitor and an aqueous medium for polishing substrates of the semiconductor industry comprising cobalt and/or a cobalt alloy and TiN and/or TaN.Type: ApplicationFiled: November 12, 2018Publication date: September 24, 2020Applicant: BASF SEInventors: Christian DAESCHLEIN, Max SIEBERT, Yongqing LAN, Michael LAUTER, Sheik Ansar USMAN IBRAHIM, Reza M GOLZARIAN, Te Yu WEI, Haci Osman GUEVENC, Julian PROELSS, Leonardus LEUNISSEN
-
Patent number: 10392488Abstract: A process for production of expanded thermoplastic elastomer beads in the presence of a gaseous medium that surrounds thermoplastic elastomer beads. The process comprises a) an impregnating step, in which the gaseous medium has an impregnating temperature Ta, and the absolute pressure of the gaseous medium is greater than ambient pressure, the thermoplastic elastomer beads impregnated with a blowing agent, b) an expanding step, in which the thermoplastic elastomer beads expand as they are exposed to a pressure reduction at a first expanding temperature Tb, and c) optionally a fusing step, in which the expanded thermoplastic elastomer beads are fused together at a fusing temperature Tc to form at least one shaped part.Type: GrantFiled: October 9, 2014Date of Patent: August 27, 2019Assignee: BASF SEInventors: Christian Däschlein, Peter Gutmann, Jürgen Ahlers
-
Publication number: 20190203009Abstract: A process for producing foam particles composed of thermoplastic elastomers having polyamide segments, comprising the steps: (a) production of a suspension of pellets of the thermoplastic elastomer in a suspension medium, (b) addition of a blowing agent, (c) impregnation of the pellets with the blowing agent by heating of the suspension in a pressure vessel to an impregnation temperature IMT at an impregnation pressure IMP, depressurization of the suspension by emptying of the pressure vessel via a depressurization device and work-up of the foam particles obtained, and also foam particles obtainable by the process.Type: ApplicationFiled: June 21, 2017Publication date: July 4, 2019Applicant: BASF SEInventors: Uwe KEPPELER, Juergen BARTL, Juergen AHLERS, Christian DAESCHLEIN, Peter GUTMANN, Frank PRISSOK
-
Publication number: 20190144781Abstract: Described is a post chemical-mechanical-polishing (post-CMP) cleaning composition comprising or consisting of: (A) one or more water-soluble nonionic copolymers of the general formula (I) and mixtures thereof, formula (I) wherein R1 and R3 are idependently from each other hydrogen, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-Butyl, or sec-butyl, R2 is methyl and x and y are an integer,1 (B)poly(acrylic acid) (PAA) oracrylic acid-maleic acid copolymer with a mass average molar mass (Mw) of up to 10,000 g/mol, and (C)water, wherein the pH of the composition is in the range of from 7.0 to 10.5.Type: ApplicationFiled: May 31, 2017Publication date: May 16, 2019Applicant: BASF SEInventors: Christian DAESCHLEIN, Max SIEBERT, Michael LAUTER, Leonardus LEUNISSEN, Ivan GARCIA ROMERO, Haci Osman GUEVENC, Peter PRZYBYLSKI, Julian PROELSS, Andreas KLIPP
-
Patent number: 10279516Abstract: A process for producing expanded pellets from a thermoplastic elastomer having an elongation at break of more than 100% measured to DIN EN ISO 527-2, comprising: (a) pressing a polymer melt comprising a blowing agent through a perforated disk (18) controlled to a temperature between 150° C. and 280° C. and into a pelletizing chamber (26), (b) using a cutting device (20) to comminute the polymer melt pressed through the perforated disk (18) into individual expanding pellets, (c) discharging the pellets from the pelletizing chamber (26) using a liquid stream (36), wherein the blowing agent comprises CO2 and/or N2 and the amount of blowing agent in the polymer melt is from 0.5 to 2.5 wt %, the pelletizing chamber (26) is traversed by a stream of liquid at a temperature between 5° C. and 90° C. and the pressure of 0.1 bar to 20 bar above ambient pressure such that the pellets are expanded in the pressurized liquid by the blowing agent, producing expanded pellets having an uninterrupted skin.Type: GrantFiled: June 11, 2014Date of Patent: May 7, 2019Assignee: BASF SEInventors: Christian Däschlein, Peter Gutmann, Frank Prissok, Uwe Keppeler, Jürgen Ahlers
-
Publication number: 20190002802Abstract: Described is a post chemical-mechanical-polishing (post-CMP) cleaning composition comprising or consisting of: (A) one or more nonionic polymers selected from the group consisting of poly-acrylamides, polyhydroxyethyl(meth)acrylates (PHE(M)A), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polymers of formula (I), and mixtures thereof, wherein R1 is hydrogen, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, or sec-butyl, R2 is hydrogen or methyl, and n is an integer, (B) poly(acrylic acid) (PAA) or acrylic acid-maleic acid copolymer with a mass average molar mass (Mw) of up to 10,000 g/mol, and (C) water, wherein the pH of the composition is in the range of from 7.0 to 10.5.Type: ApplicationFiled: December 20, 2016Publication date: January 3, 2019Applicant: BASF SEInventors: Christian DAESCHLEIN, Max SIEBERT, Michael LAUTER, Piotr PRZYBYLSKI, Julian PROELSS, Andreas KLIPP, Haci Osman GUEVENC, Leonardus LEUNISSEN, Roelf-Peter BAUMANN, Te Yu WEI
-
Publication number: 20180371371Abstract: A post chemical-mechanical-polishing (post-CMP) cleaning composition including: (A) polyethylene glycol (PEG) with a mass average molar mass (Mw) in the range of from 400 to 8,000 g/mol, (B) an anionic polymer selected from poly(acrylic acid) (PAA), acrylic acid-maleic acid copolymers, polyaspartic acid (PASA), polyglutamic acid (PGA), polyvinylphosphonic acid, polyvinylsulfonic acid, poly(styrenesulfonic acid), polycarboxylate ethers (PCE), PEG-phosphorous acids, and copolymers of the polymers thereof, and (C) water, where the pH of the composition is from 7.0 to 10.5.Type: ApplicationFiled: December 20, 2016Publication date: December 27, 2018Applicant: BASF SEInventors: Christian DAESCHLEIN, Max SIEBERT, Michael LAUTER, Peter PRZYBYLSKI, Julian PROELSS, Andreas KLIPP, Haci Osman GUEVENC, Leonardus LEUNISSEN, Roelf-Peter BAUMANN, Te Yu WEI
-
Patent number: 10005218Abstract: The invention relates to a process for production of expanded pellets from a polymer melt comprising a blowing agent, said process comprising the steps of: a) pressing the polymer melt comprising a blowing agent through a perforated disk controlled to a temperature between 150° C. and 280° C. and into a pelletizing chamber, b) using a cutting device to comminute the polymer melt pressed through the temperature-controlled perforated disk into individual expanding pellets, c) discharging the pellets from the pelletizing chamber using a liquid stream, wherein the blowing agent comprises CO2 or N2 or a combination of CO2 and N2 and the pelletizing chamber is traversed by a stream of liquid which is controlled to a temperature between 10° C. and 60° C. and the pressure of which is from 0.Type: GrantFiled: April 12, 2013Date of Patent: June 26, 2018Assignee: BASF SEInventors: Hans Rudolph, Rainer Klostermann, Torben Kaminsky, Bernd Lohaus, Jürgen Ahlers, Bernhard Schmied, Peter Gutmann, Klaus Hahn, Frank Prissok, Elke Marten, Christian Däschlein
-
Publication number: 20160297943Abstract: A process for production of expanded thermoplastic elastomer beads in the presence of a gaseous medium that surrounds thermoplastic elastomer beads. The process comprises a) an impregnating step, in which the gaseous medium has an impregnating temperature Ta, and the absolute pressure of the gaseous medium is greater than ambient pressure, the thermoplastic elastomer beads impregnated with a blowing agent, b) an expanding step, in which the thermoplastic elastomer beads expand as they are exposed to a pressure reduction at a first expanding temperature Tb, and c) optionally a fusing step, in which the expanded thermoplastic elastomer beads are fused together at a fusing temperature Tc to form at least one shaped part.Type: ApplicationFiled: October 9, 2014Publication date: October 13, 2016Inventors: Christian DÄSCHLEIN, Peter GUTMANN, Jürgen AHLERS
-
Publication number: 20160244587Abstract: The invention relates to a process for production of expanded thermoplastic elastomer, said process comprising the steps of: (e) adding monomers and/or oligomers used for producing the thermoplastic elastomer with or without further starting materials into a first stage of a polymer-processing machine, (f) mixing the monomers and/or oligomers and also the optionally added further starting materials and reacting the monomers and/or oligomers to give a polymer melt in the first stage of the polymer-processing machine, (g) passing the polymer melt into a second stage of a polymer-processing machine and adding a physical blowing agent with or without further starting materials to obtain a polymer melt comprising a blowing agent, (h) molding the polymer melt comprising a blowing agent into an expanded thermoplastic elastomer.Type: ApplicationFiled: October 17, 2014Publication date: August 25, 2016Inventors: Peter GUTMANN, Christian DÄSCHLEIN, Jürgen AHLERS, Elke MARTEN, Torben KAMINSKY, Dirk KEMPFERT
-
Publication number: 20160121524Abstract: The invention relates to a process for production of expanded pellets from a thermoplastic elastomer having an elongation at break of more than 100% measured to DIN EN 150 527-2, said process comprising the steps of: (a) pressing a polymer melt comprising a blowing agent through a perforated disk (18) controlled to a temperature between 150° C. and 280° C. and into a pelletizing chamber (26), (b) using a cutting device (20) to comminute the polymer melt pressed through the perforated disk (18) into individual expanding pellets, (c) discharging the pellets from the pelletizing chamber (26) using a liquid stream (36), wherein the blowing agent comprises CO2 or N2 or a combination of CO2 and N2 and the amount of blowing agent in the polymer melt comprising a blowing agent lies in the range from 0.5 to 2.5 wt % and wherein the pelletizing chamber (26) is traversed by a stream of liquid which is controlled to a temperature between 5° C. and 90° C. and the pressure of which is from 0.Type: ApplicationFiled: June 11, 2014Publication date: May 5, 2016Applicant: BASF SEInventors: Christian DÄSCHLEIN, Peter GUTMANN, Frank PRISSOK, Uwe KEPPELER, Jürgen AHLERS
-
Publication number: 20150174808Abstract: The invention relates to a process for production of expanded pellets from a polymer melt comprising a blowing agent, said process comprising the steps of: a) pressing the polymer melt comprising a blowing agent through a perforated disk controlled to a temperature between 150° C. and 280° C. and into a pelletizing chamber, b) using a cutting device to comminute the polymer melt pressed through the temperature-controlled perforated disk into individual expanding pellets, c) discharging the pellets from the pelletizing chamber using a liquid stream, wherein the blowing agent comprises CO2 or N2 or a combination of CO2 and N2 and the pelletizing chamber is traversed by a stream of liquid which is controlled to a temperature between 10° C. and 60° C. and the pressure of which is from 0.Type: ApplicationFiled: April 12, 2013Publication date: June 25, 2015Inventors: Hans Rudolph, Rainer Klostermann, Torben Kaminsky, Bernd Lohaus, Jürgen Ahlers, Bernhard Schmied, Peter Gutmann, Klaus Hahn, Frank Prissok, Elke Marten, Christian Däschlein