Patents by Inventor Christian Dean DeJong
Christian Dean DeJong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20160209556Abstract: Methods and systems are disclosed relating to low f/# lens with desirable imaging characteristics. In certain embodiments, the lens may include an aspheric surface and a Fresnel surface to produce one or more of the following characteristics: a large aperture; a wide field of view; a low spherical aberration and coma; a low field curvature; a monotonic field curvature for both tangential and sagittal planes; and significant but monotonic distortion. A variety of design forms may be used to accomplish the foregoing results including without limitation: an aspheric surface with a Fresnel asphere; a Forbes aspheric surface with a Fresnel asphere; an aspheric surface with a curved, 2-figure Fresnel lens; a Forbes aspheric surface with a curved, 2-figure Fresnel lens; and wide Fresnel zones. The lens may be a single element lens or a multi-element system including a thin field flattener or a negative lens for lateral color collection.Type: ApplicationFiled: January 16, 2015Publication date: July 21, 2016Inventor: Christian Dean DeJong
-
Patent number: 8888275Abstract: In imaging system (100), a spatial light modulator (101) is configured to produce images (102) by scanning a plurality light beams (104,105,106). A first optical element (107) is configured to cause the plurality of light beams to converge along an optical path (114) defined between the first optical element and the spatial light modulator. A second optical element (115) is disposed between the spatial light modulator and a waveguide (1401). The first optical element and the spatial light modulator are arranged such that an image plane (117) is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light (118) from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil (120) at an input of the waveguide.Type: GrantFiled: May 8, 2012Date of Patent: November 18, 2014Assignee: Microvision, Inc.Inventors: Christian Dean DeJong, Joshua M. Hudman
-
Patent number: 8760745Abstract: A display system includes a substrate guided relay and a scanning projector. The scanning projector exhibits a brightness variation on a resonant scanning axis, and the substrate guided relay exhibits a brightness variation along a length of an output coupler. The scanning projector includes a brightness compensation circuit to compensate for both the brightness variation caused by the resonant scanning and the brightness variation along the length of the output coupler.Type: GrantFiled: May 2, 2011Date of Patent: June 24, 2014Assignee: Microvision, Inc.Inventors: Christian Dean DeJong, Mark Champion
-
Patent number: 8721092Abstract: A substrate guided relay includes multiple output couplers and multiple light valves positioned between the substrate and the output couplers. The number of light valves may be equal to the number of output couplers, or may be more or less than the number of output couplers. The light valves may be enabled sequentially, or may be enabled based on the position of a user's eye. The light valves may include liquid crystal material.Type: GrantFiled: May 9, 2012Date of Patent: May 13, 2014Assignee: Microvision, Inc.Inventors: Christian Dean DeJong, Markus Duelli
-
Patent number: 8711458Abstract: In imaging system (100), a spatial light modulator (101) is configured to produce images (102) by scanning a plurality light beams (104,105,106). A first optical element (107) is configured to cause the plurality of light beams to converge along an optical path (114) defined between the first optical element and the spatial light modulator. A second optical element (115) is disposed between the spatial light modulator and an output of the imaging system. The first optical element and the spatial light modulator are arranged such that an image plane (117) is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light (118) from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil (120) on the other side of the second optical element relative to the spatial light modulator.Type: GrantFiled: May 8, 2012Date of Patent: April 29, 2014Assignee: Microvision, Inc.Inventors: Joshua M. Hudman, Christian Dean DeJong
-
Publication number: 20130301014Abstract: A substrate guided relay includes multiple output couplers and multiple light valves positioned between the substrate and the output couplers. The number of light valves may be equal to the number of output couplers, or may be more or less than the number of output couplers. The light valves may be enabled sequentially, or may be enabled based on the position of a user's eye. The light valves may include liquid crystal material.Type: ApplicationFiled: May 9, 2012Publication date: November 14, 2013Applicant: MICROVISION, INC.Inventors: Christian Dean DeJong, Markus Duelli
-
Publication number: 20130301097Abstract: In imaging system (100), a spatial light modulator (101) is configured to produce images (102) by scanning a plurality light beams (104,105,106). A first optical element (107) is configured to cause the plurality of light beams to converge along an optical path (114) defined between the first optical element and the spatial light modulator. A second optical element (115) is disposed between the spatial light modulator and an output of the imaging system. The first optical element and the spatial light modulator are arranged such that an image plane (117) is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light (118) from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil (120) on the other side of the second optical element relative to the spatial light modulator.Type: ApplicationFiled: May 8, 2012Publication date: November 14, 2013Applicant: MICROVISION, INC.Inventors: Joshua M. Hudman, Christian Dean DeJong
-
Publication number: 20130300999Abstract: In imaging system (100), a spatial light modulator (101) is configured to produce images (102) by scanning a plurality light beams (104,105,106). A first optical element (107) is configured to cause the plurality of light beams to converge along an optical path (114) defined between the first optical element and the spatial light modulator. A second optical element (115) is disposed between the spatial light modulator and a waveguide (1401). The first optical element and the spatial light modulator are arranged such that an image plane (117) is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light (118) from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil (120) at an input of the waveguide.Type: ApplicationFiled: May 8, 2012Publication date: November 14, 2013Applicant: MICROVISION, INC.Inventors: Christian Dean DeJong, Joshua M. Hudman
-
Patent number: 8567957Abstract: A laser-based imaging system (200) is configured to reduce perceived speckle in images (201). The imaging system (200) includes one or more laser sources (207), a light modulator (204) configured to produce the images (201) with light (205) from the laser sources (207), and one or more active polarization switches (206) disposed in an optical path of the imaging system (200). The active polarization switch (206) is configured to alternate a polarization orientation of the light in synchrony with an image refresh cycle of the system. The active polarization switch can be clocked in accordance with a clocking angle to optimize speckle reduction. Additionally, one or more light preconditioners (991,992) may be used to help optimize speckle reduction.Type: GrantFiled: July 11, 2011Date of Patent: October 29, 2013Assignee: Microvision, Inc.Inventors: Markus Duelli, Mark O. Freeman, Christian Dean DeJong, Alban N. Lescure
-
Patent number: 8531773Abstract: Briefly, in accordance with one more embodiments, a substrate guided relay for a photonics module includes a slab guide having a first end and a second end, and a first surface and a second surface. An input coupler disposed at the first end of the slab guide at an interface between the input coupler and the slab guide receives an input beam and feeds the input beam into the slab guide which generates multiple copies of the input beam. An output coupler disposed on the first surface of the slab guide causes the multiple copies of the input beam to exit the slab guide via the output coupler as an output. A homogenizer disposed on the second surface of the slab guide reflects at least some of the multiple copies of the input beam to increase uniformity of the output.Type: GrantFiled: January 10, 2011Date of Patent: September 10, 2013Assignee: Microvision, Inc.Inventor: Christian Dean DeJong
-
Patent number: 8519983Abstract: Briefly, in accordance with one or more embodiments, an input device may be utilized in conjunction with a scanned beam display or the like, or may be based on the scanning platform as used in a scanned beam display such as a MEMS based scanner. An input event such as illumination of a photodetector or reflection of a scanned beam off of a retroreflector may be correlated with a timing event of the scanning platform such as a refresh signal, or a horizontal and vertical sync signals. The correlation of the timing event may be representative of an X-Y location, and in some embodiments of a Z location, that may be utilized to provide input data back to a host device.Type: GrantFiled: December 29, 2007Date of Patent: August 27, 2013Assignee: Microvision, Inc.Inventors: Randall B. Sprague, Christian Dean DeJong, Gregory T. Gibson
-
Patent number: 8391668Abstract: Briefly, in accordance with one more embodiments, a substrate guided relay comprises a slab guide having an absorbing edge at a first end of the slab guide. An input coupler is disposed on a surface of the slab guide at an angle with respect to a first edge of the slab guide. An output coupler is disposed on the surface at a second end of the slab guide. Light rays that enter the slab guide toward the first end are absorbed by the absorbing edge, and light rays that enter the slab guide toward the output coupler exit the slab guide via the output coupler. The absorbing edge on the first edge of the slab guide allows the input coupler to be placed on the slab guide without regard to alignment of the input coupler with the first end of the slab guide.Type: GrantFiled: January 13, 2011Date of Patent: March 5, 2013Assignee: Microvision, Inc.Inventor: Christian Dean DeJong
-
Publication number: 20130016321Abstract: A laser-based imaging system (200) is configured to reduce perceived speckle in images (201). The imaging system (200) includes one or more laser sources (207), a light modulator (204) configured to produce the images (201) with light (205) from the laser sources (207), and one or more active polarization switches (206) disposed in an optical path of the imaging system (200). The active polarization switch (206) is configured to alternate a polarization orientation of the light in synchrony with an image refresh cycle of the system. The active polarization switch can be clocked in accordance with a clocking angle to optimize speckle reduction. Additionally, one or more light preconditioners (991,992) may be used to help optimize speckle reduction.Type: ApplicationFiled: July 11, 2011Publication date: January 17, 2013Applicant: MICROVISION, INC.Inventors: Markus Duelli, Mark O. Freeman, Christian Dean DeJong, Alban N. Lescure
-
Publication number: 20120281721Abstract: A display system includes a substrate guided relay and a scanning projector. The scanning projector exhibits a brightness variation on a resonant scanning axis, and the substrate guided relay exhibits a brightness variation along a length of an output coupler. The scanning projector includes a brightness compensation circuit to compensate for both the brightness variation caused by the resonant scanning and the brightness variation along the length of the output coupler.Type: ApplicationFiled: May 2, 2011Publication date: November 8, 2012Applicant: MICROVISION, INC.Inventors: Christian Dean DeJong, Mark Champion
-
Patent number: 8251517Abstract: A encoded image projection system (100) is configured to determine the proximity of the system to a projection surface (106). The encoded image projection system (100) includes a light encoder (105) that scans a non-visible light beam (115) on the projection surface (106) selectively when scanning visible light to create an image. A detector (118) is then configured to receive reflections of the non-visible light beam (115) from the projection surface (106). A control circuit (120) is configured to determine the distance (124) between the projection surface (106) and the system from, for example, intensity data or location data received from the detector (118). Where the distances (124) are below a threshold, the control circuit (120) can either reduce the output power of the system or turn the system off.Type: GrantFiled: November 9, 2009Date of Patent: August 28, 2012Assignee: Microvision, Inc.Inventors: Gregory T. Gibson, Joshua M. Hudman, Margaret K. Brown, Christian Dean DeJong
-
Publication number: 20120188148Abstract: Briefly, in accordance with one or more embodiments, to implement a meta-display in a head or body worn display system, a display having a first field of view is stored in a memory, and a portion of the first field of view is displayed in a second field of view wherein the first field of view is larger than the second field of view. A position of a user's body is detected with a body sensor and a position of the user's head is detected with a head sensor. The portion of the first field of view displayed in the second field of view is based on a position of the user's head with respect to the user's body.Type: ApplicationFiled: January 24, 2011Publication date: July 26, 2012Applicant: MICROVISION, INC.Inventor: Christian Dean DeJong
-
Publication number: 20120182303Abstract: Briefly, in accordance with one more embodiments, a substrate guided relay comprises a slab guide having an absorbing edge at a first end of the slab guide. An input coupler is disposed on a surface of the slab guide at an angle with respect to a first edge of the slab guide. An output coupler is disposed on the surface at a second end of the slab guide. Light rays that enter the slab guide toward the first end are absorbed by the absorbing edge, and light rays that enter the slab guide toward the output coupler exit the slab guide via the output coupler. The absorbing edge on the first edge of the slab guide allows the input coupler to be placed on the slab guide without regard to alignment of the input coupler with the first end of the slab guide.Type: ApplicationFiled: January 13, 2011Publication date: July 19, 2012Applicant: MICROVISION, INC.Inventor: Christian Dean DeJong
-
Publication number: 20120176682Abstract: Briefly, in accordance with one more embodiments, a substrate guided relay for a photonics module includes a slab guide having a first end and a second end, and a first surface and a second surface. An input coupler disposed at the first end of the slab guide at an interface between the input coupler and the slab guide receives an input beam and feeds the input beam into the slab guide which generates multiple copies of the input beam. An output coupler disposed on the first surface of the slab guide causes the multiple copies of the input beam to exit the slab guide via the output coupler as an output. A homogenizer disposed on the second surface of the slab guide reflects at least some of the multiple copies of the input beam to increase uniformity of the output.Type: ApplicationFiled: January 10, 2011Publication date: July 12, 2012Applicant: MICROVISION, INC.Inventor: Christian Dean DeJong
-
Patent number: 8152307Abstract: A optical apparatus (201) for use in an laser imaging system (200) is provided. The optical apparatus (201) includes one or more optical elements (215) that are configured to create an intermediate image plane (217) in the laser imaging system (200). A diffractive optical element (216) is then disposed at the intermediate image plane (217) to reduce speckle. The diffractive optical element (216) includes a periodically repeating phase mask (218) that can be configured in accordance with steps, vortex functions, Hermite-Gaussian functions, and so forth. Smooth grey-level phase transitional surface (337) can be placed between elements (333,334) to improve brightness and image quality. The periodically repeating phase mask (218) makes manufacture simple by reducing alignment sensitivity, and can be used to make applicable safety standards easier to meet as well.Type: GrantFiled: December 21, 2009Date of Patent: April 10, 2012Assignee: Microvision, Inc.Inventors: Markus Duelli, Alban N. Lescure, Mark O. Freeman, Christian Dean DeJong, Joshua M. Hudman
-
Publication number: 20110149251Abstract: A optical apparatus (201) for use in an laser imaging system (200) is provided. The optical apparatus (201) includes one or more optical elements (215) that are configured to create an intermediate image plane (217) in the laser imaging system (200). A diffractive optical element (216) is then disposed at the intermediate image plane (217) to reduce speckle. The diffractive optical element (216) includes a periodically repeating phase mask (218) that can be configured in accordance with steps, vortex functions, Hermite-Gaussian functions, and so forth. Smooth grey-level phase transitional surface (337) can be placed between elements (333,334) to improve brightness and image quality. The periodically repeating phase mask (218) makes manufacture simple by reducing alignment sensitivity, and can be used to make applicable safety standards easier to meet as well.Type: ApplicationFiled: December 21, 2009Publication date: June 23, 2011Applicant: MICROVISION, INC.Inventors: Markus Duelli, Alban N. Lescure, Mark O. Freeman, Christian Dean DeJong, Joshua M. Hudman