Patents by Inventor Christian E. Dilley

Christian E. Dilley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9923329
    Abstract: An apparatus, method and system that uses a Q-switched laser or a Q-seed source for a seed pulse signal having a controlled high-dynamic-range amplitude that avoids and/or compensates for pulse steepening in high-gain optical-fiber and/or optical-rod amplification of optical pulses. Optionally, the optical output is used for LIDAR or illumination purposes (e.g., for image acquisition). In some embodiments, well-controlled pulse shapes are obtained having a wide dynamic range, long duration, and not-too-narrow linewidth. In some embodiments, upon the opening of a Q-switch in an optical cavity having a gain medium, the amplification builds relatively slowly, wherein each round trip through the gain medium increases the amplitude of the optical pulse. Other embodiments use quasi-Q-switch devices or a plurality of amplitude modulators to obtain Q-seed pulses.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: March 20, 2018
    Assignee: Lockheed Martin Corporation
    Inventors: Matthias P. Savage-Leuchs, Christian E. Dilley, Charles A. Lemaire
  • Publication number: 20150214690
    Abstract: An apparatus, method and system that uses a Q-switched laser or a Q-seed source for a seed pulse signal having a controlled high-dynamic-range amplitude that avoids and/or compensates for pulse steepening in high-gain optical-fiber and/or optical-rod amplification of optical pulses. Optionally, the optical output is used for LIDAR or illumination purposes (e.g., for image acquisition). In some embodiments, well-controlled pulse shapes are obtained having a wide dynamic range, long duration, and not-too-narrow linewidth. In some embodiments, upon the opening of a Q-switch in an optical cavity having a gain medium, the amplification builds relatively slowly, wherein each round trip through the gain medium increases the amplitude of the optical pulse. Other embodiments use quasi-Q-switch devices or a plurality of amplitude modulators to obtain Q-seed pulses.
    Type: Application
    Filed: January 13, 2015
    Publication date: July 30, 2015
    Inventors: Matthias P. Savage-Leuchs, Christian E. Dilley, Charles A. Lemaire
  • Patent number: 8934509
    Abstract: An apparatus, method and system that uses a Q-switched laser or a Q-seed source for a seed pulse signal having a controlled high-dynamic-range amplitude that avoids and/or compensates for pulse steepening in high-gain optical-fiber and/or optical-rod amplification of optical pulses. Optionally, the optical output is used for LIDAR or illumination purposes (e.g., for image acquisition). In some embodiments, well-controlled pulse shapes are obtained having a wide dynamic range, long duration, and not-too-narrow linewidth. In some embodiments, upon the opening of a Q-switch in an optical cavity having a gain medium, the amplification builds relatively slowly, wherein each round trip through the gain medium increases the amplitude of the optical pulse. Other embodiments use quasi-Q-switch devices or a plurality of amplitude modulators to obtain Q-seed pulses.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: January 13, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Matthias P. Savage-Leuchs, Christian E. Dilley, Charles A. Lemaire
  • Patent number: 8830568
    Abstract: In some embodiments, the present invention provides an apparatus, method and use for improving and merging two existing techniques (core pumping and cladding pumping) to enable high-power fiber-laser systems having excellent beam quality while using large-core (LMA) step-index gain fibers at very high optical power, wherein the core pumping includes mixing a laser seed optical signal (having a signal wavelength) with optical core-pump light (having a core-pump wavelength that is near the signal wavelength) in a manner that matches the modes of the seed optical signal and the pump light. The combined core light is mode matched to the LMA gain fiber. The core-pump light is substantially all absorbed within a short distance from the entry end of the gain fiber and provides a strong pre-amplified signal for later cladding-pumped amplification. In some embodiments, the signal wavelength and the core-pump wavelength are within a single multiplet of a rare-earth dopant.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: September 9, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Matthias P. Savage-Leuchs, Christian E. Dilley
  • Patent number: 8767286
    Abstract: A method and apparatus for mode-matching double-clad fibers. In some embodiments, a first fiber section that has a first core, wherein the first core has a first core diameter connects to a mode-field adaptor, wherein the mode-field adaptor includes a first portion having a central volume that has a substantially constant index-of-refraction radial profile and a diameter larger than the first core diameter, and a second portion that has a graded-index (GRIN) central volume, wherein the GRIN central volume has a central axis and a graded index-of-refraction radial profile having an index that gradually decreases at larger distances from its central axis and a length selected to focus light into the core of a second fiber wherein the second core has a diameter that is larger than the first core diameter, and wherein the second fiber section is double clad. Some embodiments are polarized.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: July 1, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Matthias P. Savage-Leuchs, Christian E. Dilley
  • Publication number: 20110249320
    Abstract: In some embodiments, the present invention provides an apparatus, method and use for improving and merging two existing techniques (core pumping and cladding pumping) to enable high-power fiber-laser systems having excellent beam quality while using large-core (LMA) step-index gain fibers at very high optical power, wherein the core pumping includes mixing a laser seed optical signal (having a signal wavelength) with optical core-pump light (having a core-pump wavelength that is near the signal wavelength) in a manner that matches the modes of the seed optical signal and the pump light. The combined core light is mode matched to the LMA gain fiber. The core-pump light is substantially all absorbed within a short distance from the entry end of the gain fiber and provides a strong pre-amplified signal for later cladding-pumped amplification. In some embodiments, the signal wavelength and the core-pump wavelength are within a single multiplet of a rare-earth dopant.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 13, 2011
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Matthias P. Savage-Leuchs, Christian E. Dilley
  • Publication number: 20110249321
    Abstract: A method and apparatus for mode-matching double-clad fibers. In some embodiments, a first fiber section that has a first core, wherein the first core has a first core diameter connects to a mode-field adaptor, wherein the mode-field adaptor includes a first portion having a central volume that has a substantially constant index-of-refraction radial profile and a diameter larger than the first core diameter, and a second portion that has a graded-index (GRIN) central volume, wherein the GRIN central volume has a central axis and a graded index-of-refraction radial profile having an index that gradually decreases at larger distances from its central axis and a length selected to focus light into the core of a second fiber wherein the second core has a diameter that is larger than the first core diameter, and wherein the second fiber section is double clad. Some embodiments are polarized.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 13, 2011
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Matthias P. Savage-Leuchs, Christian E. Dilley
  • Publication number: 20110122895
    Abstract: An apparatus, method and system that uses a Q-switched laser or a Q-seed source for a seed pulse signal having a controlled high-dynamic-range amplitude that avoids and/or compensates for pulse steepening in high-gain optical-fiber and/or optical-rod amplification of optical pulses. Optionally, the optical output is used for LIDAR or illumination purposes (e.g., for image acquisition). In some embodiments, well-controlled pulse shapes are obtained having a wide dynamic range, long duration, and not-too-narrow linewidth. In some embodiments, upon the opening of a Q-switch in an optical cavity having a gain medium, the amplification builds relatively slowly, wherein each round trip through the gain medium increases the amplitude of the optical pulse. Other embodiments use quasi-Q-switch devices or a plurality of amplitude modulators to obtain Q-seed pulses.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 26, 2011
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Matthias P. Savage-Leuchs, Christian E. Dilley, Charles A. Lemaire