Patents by Inventor Christian E. Johnson

Christian E. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020127130
    Abstract: A metallic composite solid, containing alloys and/or intermetallics, is formed by compacting at moderate pressure a mixture of powder particles, foils or sheets at a temperature close to room temperature, well below the melting temperature of the constituent components and without the addition of low melting metals such as mercury, indium or gallium acting as a sintering agent. This low temperature consolidation of the powder mixture is enhanced by having the surface oxide of the powder particles removed, prior to consolidation, and/or by coating the particles with an oxide-replacing metal such as silver or gold. The coating process may be replacement reactions, autocatalytic reduction or electrolytic reduction. The composite formation is assisted by the addition of a liquid acid such as fluoroboric acid, sulfuric acid, fluoric acid, adipic acid, ascorbic acid, or nitric acid.
    Type: Application
    Filed: December 27, 2001
    Publication date: September 12, 2002
    Applicant: US, as Represented by the Secretary, Dept. of Commerce, National Inst. of Standards &Technology
    Inventors: David S. Lashmore, Moshe P. Dariel, Christian E. Johnson, Menahem B. Ratzker, Anthony A. Guiseppetti, Frederick C. Eichmiller, Glenn L. Beane, David R. Kelley
  • Patent number: 6375894
    Abstract: A metallic composite solid, containing alloys and/or intermetallics, is formed by compacting at moderate pressure a mixture of powder particles, foils or sheets at a temperature close to room temperature, well below the melting temperature of the constituent components and without the addition of low melting metals such as mercury, indium or gallium acting as a sintering agent. This low temperature consolidation of the powder mixture is enhanced by having the surface oxide of the powder particles removed, prior to consolidation, and/or by coating the particles with an oxide-replacing metal such as silver or gold. The coating process may be replacement reactions, autocatalytic reduction or electrolytic reduction. The composite formation is assisted by the addition of a liquid acid such as fluoroboric acid, sulfuric acid, fluoric acid, adipic acid, ascorbic acid, or nitric acid.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: April 23, 2002
    Assignees: The United States of America as represented by the Secretary of Commerce, American Dental Association Health Foundation
    Inventors: David S. Lashmore, Moshe P. Dariel, Christian E. Johnson, Menahem B. Ratzker, Anthony A. Guiseppetti, Frederick C. Eichmiller, Glenn L. Beane, David R. Kelley
  • Patent number: 6254757
    Abstract: A method for coating particulate substrate materials is provided which comprises (a) combining particles and an electrolyte in an imperforate container; (b) vibrating the container to generate a fluidized bed of particles in the electrolyte; and (c) electrochemically depositing a coating on the particles from reactants in the electrolyte. An apparatus for coating particles is also provided which comprises an imperforate container for receiving particles to be coated and an electrolyte and a device for generating a fluidized bed in the container, the device being operatively associated with the container.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: July 3, 2001
    Assignee: Materials Innovation, Inc.
    Inventors: David S. Lashmore, Glenn L. Beane, David R. Kelley, Christian E. Johnson
  • Patent number: 6110254
    Abstract: A method for the chemical precipitation of metallic silver powder employs a two solution technique in which a solution of a tin salt and a solution a silver salt are mixed in the presence of an inorganic or organic acid, alumina, an anionic surfactant, and a colloid to form a precipitation solution at a temperature and pH suitable to effect the chemical precipitation of silver. Almost 80% by weight of the precipitated powder agglomerate is less than 25 .mu.m in diameter, and the individual powder particles which compose the agglomerate range in size from 0.2 to 2.0 .mu.m. In addition to the favorable size distribution, silver particles precipitated in the presence of a gelatin colloid can be used with a minimal amount of sieving so that little work hardening is imparted to the particles. The powder can be annealed at a temperature of up to 750.degree. C.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: August 29, 2000
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Christian E. Johnson, Gery R. Stafford
  • Patent number: 6001289
    Abstract: A metallic composite solid, containing alloys and/or intermetallics, is formed by compacting at moderate pressure a mixture of powder particles, foils or sheets at a temperature close to room temperature, well below the melting temperature of the constituent components and without the addition of low melting metals such as mercury, indium or gallium acting as a sintering agent. This low temperature consolidation of the powder mixture is enhanced by having the surface oxide of the powder particles removed, prior to consolidation, and/or by coating the particles with an oxide-replacing metal such as silver or gold. The coating process may be replacement reactions, autocatalytic reduction or electrolytic reduction. The composite formation is assisted by the addition of a liquid acid such as fluoroboric acid, sulfuric acid, fluoric acid, adipic acid, ascorbic acid, or nitric acid.
    Type: Grant
    Filed: October 4, 1994
    Date of Patent: December 14, 1999
    Assignee: Materials Innovation, Inc.
    Inventors: David S. Lashmore, Moshe P. Dariel, Christian E. Johnson, Menahem B. Ratzker, Anthony A. Guiseppetti, Frederick C. Eichmiller, Glenn L. Beane, David R. Kelley
  • Patent number: 5759243
    Abstract: Methods for electrodepositing a metal-carbon coating on a substrate comprng immersing the substrate in an aqueous electrolyte, and passing a sufficient current through the electrolyte to effect electrolyte deposition of a metal-carbon alloy on the substrate. The aqueous electrolyte comprises from about 0.2 to about 0.6 mol/l of metal ions selected from the group consisting of iron, nickel, nickel-tungsten mixture and cobalt-tungsten mixture, greater than about 1.4 mol/l of an amidosulfonic acid or a salt thereof, ammonium ions, formic acid or a salt thereof, and water.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: June 2, 1998
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Christian E. Johnson, David Lashmore, Elaine Soltani
  • Patent number: 5711866
    Abstract: A metallic composite solid, containing alloys and/or intermetallics, is formed by compacting at moderate pressure a mixture of powder particles, foils or sheets at a temperature close to room temperature, well below the melting temperature of the constituent components and without the addition of low melting metals such as mercury, indium or gallium acting as a sintering agent. This low temperature consolidation of the powder mixture is enhanced by having the surface oxide of the powder particles removed, prior to consolidation, and/or by coating the particles with an oxide-replacing metal such as silver or gold. The coating process may be replacement reactions, autocatalytic reduction or electrolytic reduction. The composite formation is assisted by the addition of a liquid acid such as fluoroboric acid, sulfuric acid, fluoric acid, adipic acid, ascorbic acid, or nitric acid.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: January 27, 1998
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: David S. Lashmore, Moshe P. Dariel, Christian E. Johnson, Menahem B. Ratzker, Anthony A. Giuseppetti, Frederick C. Eichmiller, Glenn L. Beane, David R. Kelley
  • Patent number: 5672262
    Abstract: Methods for electrodepositing a metal-carbon coating on a substrate comprng immersing the substrate in an aqueous electrolyte, and passing a sufficient current through the electrolyte to effect electrolyte deposition of a metal-carbon alloy on the substrate. The aqueous electrolyte comprises from about 0.2 to about 0.6 mol/l of metal ions selected from the group consisting of iron, nickel, nickel-tungsten mixture and cobalt-tungsten mixture, greater than about 1.4 mol/l of an amidosulfonic acid or a salt thereof, ammonium ions, formic acid or a salt thereof, and water.
    Type: Grant
    Filed: March 27, 1995
    Date of Patent: September 30, 1997
    Assignee: The United States of America, as represented by the Secretary of Commerce
    Inventors: Christian E. Johnson, David Lashmore, Elaine Soltani
  • Patent number: 5603815
    Abstract: A method for coating particulate substrate materials is provided which comprises (a) combining particles and an electrolyte in an imperforate container; (b) vibrating the container to generate a fluidized bed of particles in the electrolyte; and (c) electrochemically depositing a coating on the particles from reactants in the electrolyte. An apparatus for coating particles is also provided which comprises an imperforate container for receiving particles to be coated and an electrolyte and a device for generating a fluidized bed in the container, the device being operatively associated with the container.
    Type: Grant
    Filed: October 4, 1994
    Date of Patent: February 18, 1997
    Inventors: David S. Lashmore, Glenn L. Beane, David R. Kelley, Christian E. Johnson
  • Patent number: 5415763
    Abstract: Methods for electrodepositing a chromium coating on a substrate comprising mmersing the substrate in an aqueous electrolyte, and passing a sufficient current through the electrolyte to effect deposition of a chromium coating on the substrate. The aqueous electrolytes comprise from about 0.2 to about 0.6 mol/l of trivalent chromium ions, greater than about 1.4 mol/l of an amidosulfonic acid or a salt thereof, ammonium ions, formic acid or a salt thereof, and water.
    Type: Grant
    Filed: August 18, 1993
    Date of Patent: May 16, 1995
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Christian E. Johnson, David Lashmore, Elaine Soltani
  • Patent number: 4699000
    Abstract: A device and method are described for measuring and evaluating mechanical properties such as microhardness of a material. The present invention conveniently incorporates commercially available hardness testing equipment but modifies it to permit continuous evaluation and measurement of the displacement of the stylus used to indent the sample being tested. By simultaneously monitoring displacement, load applied to the stylus and time values relating to the mechanical properties of the material such as wear, fatigue and tensile strength are obtained.
    Type: Grant
    Filed: April 17, 1986
    Date of Patent: October 13, 1987
    Assignee: Micro Properties Inc.
    Inventors: David S. Lashmore, Jasper L. Mullen, Christian E. Johnson, Robert S. Polvani
  • Patent number: 4361630
    Abstract: The invention provides a method of producing an ultra-black surface coating, having an extremely high light absorption capacity, on a substrate, such as a metal, ceramic, glass, or plastic, the blackness being associated with a unique surface morphology consisting of a dense array of microscopic pores etched into the surface, as well as the resulting coated substrate.The ultra-black surface, which has a spectral reflectance on the order of about from 0.5 to 1.0% at wavelengths of light of about from 320 to 2140 nanometers, finds use as a solar collector in the field of solar energy.
    Type: Grant
    Filed: August 18, 1981
    Date of Patent: November 30, 1982
    Assignee: The United States of America as represented by the Secretary of the Commerce
    Inventor: Christian E. Johnson, Sr.
  • Patent number: 4233107
    Abstract: The invention provides a method of producing an ultra-black surface coating, having an extremely high light absorption capacity, on a substrate, such as a metal, ceramic, glass, or plastic, the blackness being associated with a unique surface morphology consisting of a dense array of microscopic pores etched into the surface, as well as the resulting coated substrate.The method involves preparing the substrate for plating with a nickel-phosphorus alloy, as by cleaning and/or activating it, immersing the thus-prepared substrate in an electroless plating bath containing nickel and hypophosphite ions in solution until an electroless nickel-phosphorus alloy coating has been deposited on the substrate, and then removing the substrate, coated with the electroless nickel-phosphorus alloy, from the plating bath and washing and drying it.
    Type: Grant
    Filed: April 20, 1979
    Date of Patent: November 11, 1980
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventor: Christian E. Johnson, Sr.