Patents by Inventor Christian Grimminger

Christian Grimminger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11619319
    Abstract: The invention relates to a valve device (100) for a gaseous medium, in particular hydrogen, comprising a valve housing (6) and a solenoid armature (14) which is arranged in the valve housing and can move along the longitudinal axis (18) and which interacts with a first sealing seat (32) in order to open and close an outlet opening (40). Furthermore, the valve housing (6) is equipped with a second solenoid armature (16) which can be moved along the longitudinal axis (18) and which is at least partly received in a recess (38) of the first solenoid armature (14), and the second solenoid armature (16) interacts with a second sealing seat (34) in order to open and close an outlet opening (20) formed in the first solenoid armature (14).
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: April 4, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Marco Beier, Christian Grimminger
  • Publication number: 20220049790
    Abstract: The invention relates to a valve device (100) for a gaseous medium, in particular hydrogen, comprising a valve housing (6) and a solenoid armature (14) which is arranged in the valve housing and can move along the longitudinal axis (18) and which interacts with a first sealing seat (32) in order to open and close an outlet opening (40). Furthermore, the valve housing (6) is equipped with a second solenoid armature (16) which can be moved along the longitudinal axis (18) and which is at least partly received in a recess (38) of the first solenoid armature (14), and the second solenoid armature (16) interacts with a second sealing seat (34) in order to open and close an outlet opening (20) formed in the first solenoid armature (14).
    Type: Application
    Filed: July 17, 2019
    Publication date: February 17, 2022
    Inventors: Marco Beier, Christian Grimminger
  • Publication number: 20210324824
    Abstract: The invention relates to a method for operating a fuel injector (10) and to a fuel injector (10) which is configured to carry out the method. The method comprises the steps of introducing a fuel under high pressure into a feed passage (78) and branching off a substream of the fuel under high pressure into a control space (74) in which an axial end face (70) of the nozzle needle (50) is loaded with the pressure such that the nozzle needle (50) is hydraulically loaded in the closing direction, and of opening a control valve (90) such that an outflow path arranged downstream of the control valve (90) in an outflow direction is freed and fuel flows out of the control space (74) in order to relieve the nozzle needle (50), wherein the fuel flowing out via the outflow path is divided into at least two substreams.
    Type: Application
    Filed: July 3, 2019
    Publication date: October 21, 2021
    Inventors: Johannes Unrath, Henning Kreschel, Thomas Schwarz, Boerries Belkner, Christian Grimminger, Violaine Chassagnoux
  • Patent number: 9322356
    Abstract: In a method for operating a valve, e.g., a fuel injector of an internal combustion engine in a motor vehicle which is activated with the aid of an actuator, the actuator is activated using a control variable which has a predetermined control period. The control period is formed as a function of a setpoint value for a closing delay time of the valve which characterizes a time difference between an end of the control period and a closing point in time of the valve.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 26, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christian Grimminger, Egbert Fuchs, Helerson Kemmer, Holger Rapp, Thomas Gann, Anh-Tuan Hoang, Ralph Kober, Christian Szonn
  • Publication number: 20120247428
    Abstract: In a method for operating a valve, e.g., a fuel injector of an internal combustion engine in a motor vehicle which is activated with the aid of an actuator, the actuator is activated using a control variable which has a predetermined control period. The control period is formed as a function of a setpoint value for a closing delay time of the valve which characterizes a time difference between an end of the control period and a closing point in time of the valve.
    Type: Application
    Filed: September 10, 2010
    Publication date: October 4, 2012
    Inventors: Christian Grimminger, Egbert Fuchs, Helerson Kemmer, Holger Rapp, Thomas Gann, Anh-Tuan Hoang, Ralph Kober, Christian Szonn
  • Patent number: 7083113
    Abstract: A fuel injection apparatus for injecting fuel into the combustion chambers of an internal combustion engine. includes a high pressure accumulator, a pressure booster, and a metering valve. The pressure booster includes a working chamber and a control chamber that are separated from each other by an axially movable piston. A pressure change in the control chamber produces a pressure change in a compression chamber that acts on a nozzle chamber via a fuel inlet. The nozzle chamber encompasses a nozzle needle. A nozzle spring chamber that acts on the injection valve element can be filled on the high-pressure side via a line that leads from the compression chamber and contains an inlet throttle restriction. On the outlet side, the nozzle spring chamber is connected to a chamber of the pressure booster via a line that contains an outlet throttle restriction.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: August 1, 2006
    Assignee: Robert Bosch GmbH
    Inventors: Martin Kropp, Hans-Christoph Magel, Manfred Mack, Christian Grimminger
  • Publication number: 20050077378
    Abstract: A fuel injection apparatus for injecting fuel into the combustion chambers of an internal combustion engine includes a high pressure accumulator, a pressure booster, and a metering valve. The pressure booster includes a working chamber and a control chamber that are separated from each other by an axially movable piston. A pressure change in the control chamber produces a pressure change in a compression chamber that acts on a nozzle chamber via a fuel inlet. The nozzle chamber encampasses a nozzle needle. A nozzle spring chamber that acts on the injection valve element can be filled on the high-pressure side via a line that leads from the compression chamber and contains an inlet throttle restriction. On the outlet side, the nozzle spring chamber is connected to a chamber of the pressure booster via a line that contains an outlet throttle restriction.
    Type: Application
    Filed: April 9, 2003
    Publication date: April 14, 2005
    Inventors: Martin Kropp, Hans-Christoph Magel, Manfred Mack, Christian Grimminger