Patents by Inventor Christian J. Michel

Christian J. Michel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110015904
    Abstract: Example embodiments are directed to a method of correcting attenuation in a magnetic resonance (MR) scanner and a positron emission tomography (PET) unit. The method includes acquiring PET sinogram data of an object within a field of view of the PET unit. The method further includes producing an attenuation map based on a maximum likelihood expectation maximization (MLEM) of a parameterized model instance and the PET sinogram data.
    Type: Application
    Filed: July 16, 2009
    Publication date: January 20, 2011
    Inventors: Matthias Fenchel, Ralf Ladebeck, Christian J. Michel, Charles C. Watson
  • Patent number: 7856129
    Abstract: A method for interpolating at least one oblique line of response ray representing nuclear image projection data through a rectangular volume and a system for using the method. The method consists of steps of interpolating all the direct rays in a rectangular volume, making a projected ray by projecting the oblique ray onto a surface of the rectangular volume, matching the projected ray to a coinciding interpolated direct ray, shearing the rectangular volume to match the projected ray, and interpolating the oblique ray in the sheared volume.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: December 21, 2010
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Vladimir Panin, Frank Kehren, Christian J. Michel
  • Patent number: 7848559
    Abstract: Axial rebinning methods are provided for 3D time-of-flight (TOF) positron emission tomography (PET), based on 2D data rebinning. Rebinning is performed separately for each axial plane parallel to the axis of the PET scanner. An analytical approach is provided that is based on a consistency condition for TOF-PET data with a gaussian profile. A fully discrete approach is also provided, wherein each 2D TOF-PET data is calculated as a linear combination of 3D TOF-PET data having the same sinogram coordinates s and ?.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: December 7, 2010
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Michel Defrise, Vladimir Panin, Christian J. Michel, Michael E. Casey
  • Patent number: 7768261
    Abstract: A phantom and method are provided for co-registering a magnetic resonance image and a nuclear medical image. The phantom includes a first housing defining a first chamber configured to receive a magnetic resonance material upon which magnetic resonance imaging can be performed in order to produce the magnetic resonance image. The phantom also includes three or more second housings configured to be attached to the first housing, where the second housings each define a second chamber configured to receive a radioactive material upon which nuclear imaging can be performed in order to produce the nuclear medical image and upon which the magnetic imaging can be performed in order to produce the magnetic resonance image. The first chamber has a volumetric capacity that is larger than a volumetric capacity of each second chamber.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: August 3, 2010
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Rainer Paul, Matthias J. Schmand, Charles H. Hayden, Jr., James Corbeil, Christian J. Michel, Ziad Burbar, Volker Matschl
  • Publication number: 20100078568
    Abstract: In positron emission tomography (PET), a detector's response to scattered radiation may be different from its response to unscattered (true coincidence) photons. This difference should be accounted for during normalization and scatter correction. The disclosure shows that only a knowledge of the ratio of the scatter to trues efficiencies is necessary, however. A system and method are disclosed for measuring the scatter/trues detection efficiency ratio, as well as for applying this compensation during the scatter correction of PET emission data. PET detector efficiencies are measured in two steps, the first using a plane radiation source, and the second using a plane radiation source in combination with a scattering medium. A ratio of the scatter and trues detection efficiency is obtained from this data for each detector/crystal, and is applied as a correction factor to PET data obtained during medical imaging processes.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 1, 2010
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Larry Byars, Christian J. Michel, Harold Rothfuss, Charles C. Watson
  • Publication number: 20100074501
    Abstract: A method for co-registering attenuation data of MR coils in a MR/PET imaging system with PET emission data includes computing a likelihood of PET emission data on a grid in a parameter space based on an algorithm, wherein the algorithm defines L(?, ?body, ?coils{p}) as a log-likelihood of measured PET data, where ? is an emitter distribution (image), ?body is a known linear attenuation coefficient (LAC) distribution of the body from MRI, ?coils is a linear attenuation coefficient map of MRI coils, and {p} is a set of parameters governing the position of each coil, wherein if ?coils is assumed, then ? can be reconstructed and forward projected and L can be computed. The method includes adjusting the estimated position of the MR coils to maximize the likelihood of emission data based on the computed L.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 25, 2010
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Ralf Ladebeck, Christian J. Michel, Charles C. Watson
  • Publication number: 20100066385
    Abstract: A method is disclosed for at least partly determining and/or adapting an attenuation map used for attenuation correction of Positron Emission Tomography image data sets in a combined Magnetic Resonance-Positron Emission Tomography device. In at least one embodiment of the method, at least one one-dimensional magnetic resonance data set of a patient is recorded along one imaging direction; the boundaries of at least one part of the body of the patient intersected by the imaging direction are determined from the one-dimensional magnetic resonance data set; and the attenuation map is determined and/or adapted at least partly as a function of the boundaries determined.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 18, 2010
    Inventors: Kirstin Jattke, Ralf Ladebeck, Christian J. Michel, Thorsten Speckner
  • Publication number: 20080269594
    Abstract: A phantom and method are provided for co-registering a magnetic resonance image and a nuclear medical image. The phantom includes a first housing defining a first chamber configured to receive a magnetic resonance material upon which magnetic resonance imaging can be performed in order to produce the magnetic resonance image. The phantom also includes three or more second housings configured to be attached to the first housing, where the second housings each define a second chamber configured to receive a radioactive material upon which nuclear imaging can be performed in order to produce the nuclear medical image and upon which the magnetic imaging can be performed in order to produce the magnetic resonance image. The first chamber has a volumetric capacity that is larger than a volumetric capacity of each second chamber.
    Type: Application
    Filed: April 25, 2008
    Publication date: October 30, 2008
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Rainer Paul, Matthias J. Schmand, Charles H. Hayden, James Corbeil, Christian J. Michel, Ziad Burbar, Volker Matschl
  • Publication number: 20080219525
    Abstract: A method for interpolating at least one oblique line of response ray representing nuclear image projection data through a rectangular volume and a system for using the method. The method consists of steps of interpolating all the direct rays in a rectangular volume, making a projected ray by projecting the oblique ray onto a surface of the rectangular volume, matching the projected ray to a coinciding interpolated direct ray, shearing the rectangular volume to match the projected ray, and interpolating the oblique ray in the sheared volume.
    Type: Application
    Filed: March 9, 2007
    Publication date: September 11, 2008
    Inventors: Vladimir Panin, Frank Kehren, Christian J. Michel
  • Publication number: 20080219534
    Abstract: An apparatus and method for expanding the FOV of a truncated computed tomography (CT) scan. An iterative calculation is performed on the original CT image to produce an estimate of the image. The calculated estimate of the reconstructed image includes the original image center and a estimate of the truncated portion outside the image center. The calculation uses an image mask with the image center as one boundary.
    Type: Application
    Filed: December 21, 2007
    Publication date: September 11, 2008
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: David D. FAUL, Christian J. MICHEL
  • Patent number: 7417231
    Abstract: Fast reconstruction methods are provided for 3D time-of-flight (TOF) positron emission tomography (PET), based on 2D data re-binning. Starting from pre-corrected 3D TOF data, a re-binning algorithm estimates for each transaxial slice the 2D TOF sinogram. The re-binned sinograms can then be reconstructed using any algorithm for 2D TOF reconstruction. A TOF-FORE (Fourier re-binning of TOF data) algorithm is provided as an approximate re-binning algorithm obtained by extending the Fourier re-binning method for non-TOF data. In addition, two partial differential equations are identified that must be satisfied by consistent 3D TOF data, and are used to derive exact re-binning algorithms and to characterize the degree of the approximation in TOF-FORE.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: August 26, 2008
    Assignee: CTI PET Systems, Inc.
    Inventors: Michel Defrise, Michael E. Casey, Christian J. Michel, Maurizio Conti
  • Publication number: 20080099686
    Abstract: Axial rebinning methods are provided for 3D time-of-flight (TOF) positron emission tomography (PET), based on 2D data rebinning. Rebinning is performed separately for each axial plane parallel to the axis of the PET scanner. An analytical approach is provided that is based on a consistency condition for TOF-PET data with a gaussian profile. A fully discrete approach is also provided, wherein each 2D TOF-PET data is calculated as a linear combination of 3D TOF-PET data having the same sinogram coordinates s and ?.
    Type: Application
    Filed: May 17, 2007
    Publication date: May 1, 2008
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Michel Defrise, Vladimir Panin, Christian J. Michel, Michael E. Casey
  • Patent number: 7324624
    Abstract: Emission contamination data are collected in a shifted mock scan simultaneous with the collection of transmission data during a transmission scan of a patient with a collimated gamma point source, the transmission data are corrected with the emission contamination data, and the corrected transmission data are used for attenuation correction of emission data for reconstruction of an emission image of the patient. In a preferred implementation, when the point source is at a particular axial location and illuminates an axial beamwidth of “Fz” over the gamma detector, emission contamination data are collected from the gamma detector over an axial separated region “Fz?” having about the same axial extent but axially displaced by about half of the axial field of view (FOV).
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: January 29, 2008
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Merence Sibomana, Mark W. Lenox, Larry Byars, Christian J. Michel, Danny Newport
  • Publication number: 20030190065
    Abstract: A method for performing accurate iterative reconstruction of image data sets based on Approximate Discrete Radon Transformation (ADRT). ADRT and its inverse are implemented to provide exactly matched forward and backward projectors suitable for the Maximum-Likelihood Expectation-Maximization (ML-EM) reconstruction in PET. A 2D EM reconstruction algorithm is accomplished by initializing an estimation image. A back projection of the projection weights is then formed. A loop is begun with a controlled number of iterations. The estimated image is then forward projected using linogram coordinates. A correction ratio linogram is formed and correction factors are back projected. A normalization factor is then applied. This 2D EM method is extendable into 3D reconstructions using 3D PET lines of response. Forward projection is performed on planes extracted from the image voxels. Back projection is also performed in 2D planes, which are subsequently added into the 3D array with the correct orientations.
    Type: Application
    Filed: March 26, 2003
    Publication date: October 9, 2003
    Applicant: CTI PET Systems, Inc.
    Inventors: James J. Hamill, Christian J. Michel