Patents by Inventor Christian M. Sauer

Christian M. Sauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11418191
    Abstract: A capacitive sensing device can include multiple capacitive sensors. A first device controller is operatively connected to a portion of the capacitive sensors, while a second device controller is operatively connected to another portion of capacitive sensors. A common node or shield can be connected between the first device controller and the second device controller. Charging and discharging events of selected drive lines in the capacitive sensing device and/or of the common node or shield can be synchronized to reduce undesirable effects such as noise and/or to prevent the charging events and the discharging events from overlapping with each other. One or more reference capacitive sensors can be shared by the multiple device controllers.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: August 16, 2022
    Assignee: Apple Inc.
    Inventors: Christian M. Sauer, Peter W. Richards
  • Publication number: 20210357063
    Abstract: An integrated touchscreen can include light emitting diodes or organic light emitting diodes (LEDs/OLEDs), display chiplets and touch chiplets disposed in a visible area of the integrated touch screen. For example, the LEDs/OLEDs, display chiplets and touch chiplets can be placed on a substrate by a micro-transfer tool. The integrated touchscreen can also include electrodes disposed in the visible area of the integrated touch screen. The electrodes can be capable of providing display functionality via the one or more display chiplets during display operation (e.g., operating as cathode terminals of the LEDs during the display operation) and capable of providing touch functionality via the touch chiplets during touch operation (e.g., touch node electrodes can be formed from groups of the electrodes and sensed). In some examples, the touch node electrodes can be formed and coupled to touch chiplets via the display chiplets.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 18, 2021
    Inventors: Christian M. SAUER, Christoph H. KRAH, Derek K. SHAEFFER, Hasan AKYOL, Henry C. JEN, Hopil BAE, John T. WETHERELL, Thierry S. DIVEL, Xiang LU
  • Patent number: 11073927
    Abstract: An integrated touchscreen can include light emitting diodes or organic light emitting diodes (LEDs/OLEDs), display chiplets and touch chiplets disposed in a visible area of the integrated touch screen. For example, the LEDs/OLEDs, display chiplets and touch chiplets can be placed on a substrate by a micro-transfer tool. The integrated touchscreen can also include electrodes disposed in the visible area of the integrated touch screen. The electrodes can be capable of providing display functionality via the one or more display chiplets during display operation (e.g., operating as cathode terminals of the LEDs during the display operation) and capable of providing touch functionality via the touch chiplets during touch operation (e.g., touch node electrodes can be formed from groups of the electrodes and sensed). In some examples, the touch node electrodes can be formed and coupled to touch chiplets via the display chiplets.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: July 27, 2021
    Assignee: Apple Inc.
    Inventors: Christian M. Sauer, Christoph H. Krah, Derek K. Shaeffer, Hasan Akyol, Henry C. Jen, Hopil Bae, John T. Wetherell, Thierry S. Divel, Xiang Lu
  • Publication number: 20210184676
    Abstract: A capacitive sensing device can include multiple capacitive sensors. A first device controller is operatively connected to a portion of the capacitive sensors, while a second device controller is operatively connected to another portion of capacitive sensors. A common node or shield can be connected between the first device controller and the second device controller. Charging and discharging events of selected drive lines in the capacitive sensing device and/or of the common node or shield can be synchronized to reduce undesirable effects such as noise and/or to prevent the charging events and the discharging events from overlapping with each other. One or more reference capacitive sensors can be shared by the multiple device controllers.
    Type: Application
    Filed: February 26, 2021
    Publication date: June 17, 2021
    Inventors: Christian M. Sauer, Peter W. Richards
  • Patent number: 11016616
    Abstract: An electronic device can include an integrated touch and display chip that can operate in multiple power domains. For example, the integrated touch and display chip can operate in a guarded power domain during the touch operation and can operate in a system power domain during non-guarded display operations. In some examples, two power domains can include a guarded power domain and a system power domain, whose grounds can be differentiated by a guard buffer signal. In some examples, the guard buffer can be disposed between the integrated touch and display chip and a battery of the device. In some examples, the guard buffer can be disposed between the battery of the device and the chassis of the device.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: May 25, 2021
    Assignee: Apple Inc.
    Inventors: Christian M. Sauer, Christoph H. Krah, Steven P. Hotelling, Martin Paul Grunthaner
  • Patent number: 10965285
    Abstract: A capacitive sensing device can include multiple capacitive sensors. A first device controller is operatively connected to a portion of the capacitive sensors, while a second device controller is operatively connected to another portion of capacitive sensors. A common node or shield can be connected between the first device controller and the second device controller. Charging and discharging events of selected drive lines in the capacitive sensing device and/or of the common node or shield can be synchronized to reduce undesirable effects such as noise and/or to prevent the charging events and the discharging events from overlapping with each other. One or more reference capacitive sensors can be shared by the multiple device controllers.
    Type: Grant
    Filed: December 8, 2019
    Date of Patent: March 30, 2021
    Assignee: Apple Inc.
    Inventors: Christian M. Sauer, Peter W. Richards
  • Patent number: 10852894
    Abstract: A touch sensing system is disclosed. The touch sensing system includes a guard signal generation chip operating in a first power domain referenced to a first voltage, the guard signal generation chip configured to generate a guard signal. A touch sensing chip operates in a second power domain, different from the first power domain, referenced to the guard signal, the touch sensing chip configured to sense touch at one or more touch electrodes included in a touch sensor panel operating in the second power domain referenced to the guard signal, and the touch sensing chip a different chip than the guard signal generation chip. A voltage regulator is configured to selectively regulate a voltage of the guard signal at the touch sensing chip.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: December 1, 2020
    Assignee: Apple Inc.
    Inventors: Christoph H. Krah, Christian M. Sauer
  • Patent number: 10739899
    Abstract: A device configured to sense a touch on a surface of the device. The device includes a cover and a force-sensing structure disposed below the cover. The force-sensing structure may be positioned below a display and used in combination with other force-sensing elements to estimate the force of a touch on the cover of a device.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: August 11, 2020
    Assignee: Apple Inc.
    Inventors: Sinan Filiz, Martin P. Grunthaner, John Stephen Smith, Charley T. Ogata, Christian M. Sauer, Shin John Choi, Christopher J. Butler, Steven J. Martisauskas
  • Publication number: 20200110505
    Abstract: A capacitive sensing device can include multiple capacitive sensors. A first device controller is operatively connected to a portion of the capacitive sensors, while a second device controller is operatively connected to another portion of capacitive sensors. A common node or shield can be connected between the first device controller and the second device controller. Charging and discharging events of selected drive lines in the capacitive sensing device and/or of the common node or shield can be synchronized to reduce undesirable effects such as noise and/or to prevent the charging events and the discharging events from overlapping with each other. One or more reference capacitive sensors can be shared by the multiple device controllers.
    Type: Application
    Filed: December 8, 2019
    Publication date: April 9, 2020
    Inventors: Christian M. Sauer, Peter W. Richards
  • Publication number: 20200103992
    Abstract: An electronic device can include an integrated touch and display chip that can operate in multiple power domains. For example, the integrated touch and display chip can operate in a guarded power domain during the touch operation and can operate in a system power domain during non-guarded display operations. In some examples, two power domains can include a guarded power domain and a system power domain, whose grounds can be differentiated by a guard buffer signal. In some examples, the guard buffer can be disposed between the integrated touch and display chip and a battery of the device. In some examples, the guard buffer can be disposed between the battery of the device and the chassis of the device.
    Type: Application
    Filed: August 2, 2019
    Publication date: April 2, 2020
    Inventors: Christian M. SAUER, Christoph H. KRAH, Steven P. HOTELLING, Martin Paul GRUNTHANER
  • Patent number: 10606430
    Abstract: Touch sensor panel configurations and methods for improving touch sensitivity of some or all of the electrodes or portions of the touch sensor panel are disclosed. The touch sensor panel configurations can allow increased speed at which the panel can operate. In some examples, the performance of a given touch electrode can differ from the performance of another touch electrode due to differences in capacitance and/or resistance. The performance of the touch sensor panel can be limited by the touch electrode with the lowest performance relative to the other touch electrodes. The configurations and methods can increase the performance of the touch sensor panel by minimizing the capacitive coupling and/or resistance of touch electrodes. Examples of the disclosure can provide configurations of touch sensor panels and methods for improving optical uniformity of the panel.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: March 31, 2020
    Assignee: Apple Inc.
    Inventors: Christophe Blondin, Christian M. Sauer
  • Publication number: 20200033979
    Abstract: An integrated touchscreen can include light emitting diodes or organic light emitting diodes (LEDs/OLEDs), display chiplets and touch chiplets disposed in a visible area of the integrated touch screen. For example, the LEDs/OLEDs, display chiplets and touch chiplets can be placed on a substrate by a micro-transfer tool. The integrated touchscreen can also include electrodes disposed in the visible area of the integrated touch screen. The electrodes can be capable of providing display functionality via the one or more display chiplets during display operation (e.g., operating as cathode terminals of the LEDs during the display operation) and capable of providing touch functionality via the touch chiplets during touch operation (e.g., touch node electrodes can be formed from groups of the electrodes and sensed). In some examples, the touch node electrodes can be formed and coupled to touch chiplets via the display chiplets.
    Type: Application
    Filed: July 19, 2019
    Publication date: January 30, 2020
    Inventors: Christian M. SAUER, Christoph H. KRAH, Derek K. SHAEFFER, Hasan AKYOL, Henry C. JEN, Hopil BAE, John T. WETHERELL, Thierry S. DIVEL, Xiang LU
  • Patent number: 10540036
    Abstract: A capacitive sensing device can include multiple capacitive sensors. A first device controller is operatively connected to a portion of the capacitive sensors, while a second device controller is operatively connected to another portion of capacitive sensors. A common node or shield can be connected between the first device controller and the second device controller. Charging and discharging events of selected drive lines in the capacitive sensing device and/or of the common node or shield can be synchronized to reduce undesirable effects such as noise and/or to prevent the charging events and the discharging events from overlapping with each other. One or more reference capacitive sensors can be shared by the multiple device controllers.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: January 21, 2020
    Assignee: Apple Inc.
    Inventors: Christian M. Sauer, Peter W. Richards
  • Publication number: 20200019265
    Abstract: A touch sensing system is disclosed. The touch sensing system includes a guard signal generation chip operating in a first power domain referenced to a first voltage, the guard signal generation chip configured to generate a guard signal. A touch sensing chip operates in a second power domain, different from the first power domain, referenced to the guard signal, the touch sensing chip configured to sense touch at one or more touch electrodes included in a touch sensor panel operating in the second power domain referenced to the guard signal, and the touch sensing chip a different chip than the guard signal generation chip. A voltage regulator is configured to selectively regulate a voltage of the guard signal at the touch sensing chip.
    Type: Application
    Filed: September 24, 2019
    Publication date: January 16, 2020
    Inventors: Christoph H. KRAH, Christian M. SAUER
  • Publication number: 20190361560
    Abstract: A device configured to sense a touch on a surface of the device. The device includes a cover and a force-sensing structure disposed below the cover. The force-sensing structure may be positioned below a display and used in combination with other force-sensing elements to estimate the force of a touch on the cover of a device.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Inventors: Sinan Filiz, Martin P. Grunthaner, John Stephen Smith, Charley T. Ogata, Christian M. Sauer, Shin John Choi, Christopher J. Butler, Steven J. Martisauskas
  • Publication number: 20190339799
    Abstract: Touch sensor panel configurations and methods for improving touch sensitivity of some or all of the electrodes or portions of the touch sensor panel are disclosed. The touch sensor panel configurations can allow increased speed at which the panel can operate. In some examples, the performance of a given touch electrode can differ from the performance of another touch electrode due to differences in capacitance and/or resistance. The performance of the touch sensor panel can be limited by the touch electrode with the lowest performance relative to the other touch electrodes. The configurations and methods can increase the performance of the touch sensor panel by minimizing the capacitive coupling and/or resistance of touch electrodes. Examples of the disclosure can provide configurations of touch sensor panels and methods for improving optical uniformity of the panel.
    Type: Application
    Filed: July 18, 2019
    Publication date: November 7, 2019
    Inventors: Christophe BLONDIN, Christian M. SAUER
  • Patent number: 10459587
    Abstract: A touch sensing system is disclosed. The touch sensing system includes a guard signal generation chip operating in a first power domain referenced to a first voltage, the guard signal generation chip configured to generate a guard signal. A touch sensing chip operates in a second power domain, different from the first power domain, referenced to the guard signal, the touch sensing chip configured to sense touch at one or more touch electrodes included in a touch sensor panel operating in the second power domain referenced to the guard signal, and the touch sensing chip a different chip than the guard signal generation chip. A voltage regulator is configured to selectively regulate a voltage of the guard signal at the touch sensing chip.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: October 29, 2019
    Assignee: Apple Inc.
    Inventors: Christoph H. Krah, Christian M. Sauer
  • Patent number: 10379657
    Abstract: A device configured to sense a touch on a surface of the device. The device includes a cover and a force-sensing structure disposed below the cover. The force-sensing structure may be positioned below a display and used in combination with other force-sensing elements to estimate the force of a touch on the cover of a device.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: August 13, 2019
    Assignee: Apple Inc.
    Inventors: Sinan Filiz, Martin P. Grunthaner, John Stephen Smith, Charley T. Ogata, Christian M. Sauer, Shin John Choi, Christopher J. Butler, Steven J. Martisauskas
  • Patent number: 10372282
    Abstract: Touch sensor panel configurations and methods for improving touch sensitivity of some or all of the electrodes or portions of the touch sensor panel are disclosed. The touch sensor panel configurations can allow increased speed at which the panel can operate. In some examples, the performance of a given touch electrode can differ from the performance of another touch electrode due to differences in capacitance and/or resistance. The performance of the touch sensor panel can be limited by the touch electrode with the lowest performance relative to the other touch electrodes. The configurations and methods can increase the performance of the touch sensor panel by minimizing the capacitive coupling and/or resistance of touch electrodes. Examples of the disclosure can provide configurations of touch sensor panels and methods for improving optical uniformity of the panel.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: August 6, 2019
    Assignee: Apple Inc.
    Inventors: Christophe Blondin, Christian M. Sauer
  • Patent number: 10318089
    Abstract: Several techniques for driving a force sensor to reduce common mode offset are disclosed. The force sensor can include at least one set of individual strain sensitive structures formed on or in a surface of a substrate. Each set of individual strain sensitive structures can include one or more strain sensitive structures. At least one external resistor is operably connected in series between a first output of one or more transmitter channels and at least one set of strain sensitive structures. The external resistor(s) effectively increases the resistances of the strain sensitive structures to reduce the common mode offset. Additionally or alternatively, one or more signal generators may be connected to one or more transmitter channels. Each signal generator is configured to produce one or more signals that is/are designed to reduce common mode offset.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: June 11, 2019
    Assignee: Apple Inc.
    Inventors: John Stephen Smith, Manu Agarwal, Christian M. Sauer