Patents by Inventor Christian Manfred Tomanik

Christian Manfred Tomanik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8230674
    Abstract: Modern exhaust-gas purification systems in motor vehicles with a lean-burn engine include a starting catalyst fitted close to the engine and a main catalyst arranged in the underbody region, with both the starting catalyst and the main catalyst being formed by nitrogen oxide storage catalysts. The nitrogen oxide storage catalysts are in each case regenerated by the engine being briefly switched from lean-burn mode to rich-burn mode when the nitrogen oxide concentration in the exhaust gas downstream of the storage catalysts rises above a predetermined value. The starting catalyst is exposed to particularly high temperatures and is therefore prone to faster ageing of its nitrogen oxide storage capacity than the main catalyst.
    Type: Grant
    Filed: December 17, 2005
    Date of Patent: July 31, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Stephan Bremm, Christian Manfred Tomanik, Ulrich Goebel, Wilfried Mueller, Thomas Kreuzer
  • Patent number: 7905087
    Abstract: Nitrogen oxide storage catalytic converters for purifying the exhaust gas of lean-burn engines are periodically regenerated by switching the engine from lean-burn mode to rich-burn mode. After regeneration has taken place, the engine is switched back to lean-burn mode. At this time, rich exhaust gas is still flowing in the exhaust line from the engine to the catalytic converter, which rich exhaust gas is ejected via the catalytic converter into the environment by the following, lean exhaust gas. This leads to brief emissions peaks of the rich exhaust gas constituents and impairs the level of exhaust gas cleaning which can be obtained. In order to solve said problem, it is proposed to create oxidizing conditions by injecting air upstream of the storage catalytic converter, so that the rich exhaust gas constituents still flowing in the exhaust line upstream of the storage catalytic converter can be converted at the storage catalytic converter to form non-harmful products.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: March 15, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Ulrich Goebel, Stephan Bremm, Christian Manfred Tomanik, Wilfried Mueller, Thomas Kreuzer
  • Patent number: 7832201
    Abstract: To remove the nitrogen oxides from the exhaust gas from lean-burn engines, these engines are equipped with a nitrogen oxide storage catalyst, which has to be regenerated frequently by the engine being briefly switched to rich-burn mode. The regeneration is usually initiated when the nitrogen oxide concentration downstream of the catalyst rises above a permissible value. In this context, there is a risk of the bed temperature of the catalyst during and after regeneration being pushed into a range with incipient thermal desorption of the nitrogen oxides on account of the heat which is released during the conversion of the nitrogen oxides by the reducing constituents of the exhaust gas. This can lead to increased nitrogen oxide emission both during the regeneration itself and after the engine has been switched back to lean-burn mode.
    Type: Grant
    Filed: December 24, 2005
    Date of Patent: November 16, 2010
    Assignee: Umicore AG & Co. KG
    Inventors: Stephan Bremm, Christian Manfred Tomanik, Ulrich Goebel, Wilfried Mueller, Thomas Kreuzer
  • Publication number: 20090229249
    Abstract: Modern exhaust-gas purification systems in motor vehicles with a lean-burn engine include a starting catalyst fitted close to the engine and a main catalyst arranged in the underbody region, with both the starting catalyst and the main catalyst being formed by nitrogen oxide storage catalysts. The nitrogen oxide storage catalysts are in each case regenerated by the engine being briefly switched from lean-burn mode to rich-burn mode when the nitrogen oxide concentration in the exhaust gas downstream of the storage catalysts rises above a predetermined value. The starting catalyst is exposed to particularly high temperatures and is therefore prone to faster ageing of its nitrogen oxide storage capacity than the main catalyst.
    Type: Application
    Filed: December 17, 2005
    Publication date: September 17, 2009
    Inventors: Stephan Bremm, Christian Manfred Tomanik, Ulrich Goebel, Wilfried Mueller, Thomas Kreuzer
  • Publication number: 20090151329
    Abstract: To remove the nitrogen oxides from the exhaust gas from lean-burn engines, these engines are equipped with a nitrogen oxide storage catalyst, which has to be regenerated frequently by the engine being briefly switched to rich-burn mode. The regeneration is usually initiated when the nitrogen oxide concentration downstream of the catalyst rises above a permissible value. In this context, there is a risk of the bed temperature of the catalyst during and after regeneration being pushed into a range with incipient thermal desorption of the nitrogen oxides on account of the heat which is released during the conversion of the nitrogen oxides by the reducing constituents of the exhaust gas. This can lead to increased nitrogen oxide emission both during the regeneration itself and after the engine has been switched back to lean-burn mode.
    Type: Application
    Filed: December 24, 2005
    Publication date: June 18, 2009
    Inventors: Stephan Bremm, Christian Manfred Tomanik, Ulrich Goebel, Wilfried Mueller, Thomas Kreuzer
  • Publication number: 20090145112
    Abstract: Nitrogen oxide storage catalytic converters for purifying the exhaust gas of lean-burn engines are periodically regenerated by switching the engine from lean-burn mode to rich-burn mode. After regeneration has taken place, the engine is switched back to lean-burn mode. At this time, rich exhaust gas is still flowing in the exhaust line from the engine to the catalytic converter, which rich exhaust gas is ejected via the catalytic converter into the environment by the following, lean exhaust gas. This leads to brief emissions peaks of the rich exhaust gas constituents and impairs the level of exhaust gas cleaning which can be obtained. In order to solve said problem, it is proposed to create oxidizing conditions by injecting air upstream of the storage catalytic converter, so that the rich exhaust gas constituents still flowing in the exhaust line upstream of the storage catalytic converter can be converted at the storage catalytic converter to form non-harmful products.
    Type: Application
    Filed: June 22, 2006
    Publication date: June 11, 2009
    Applicant: UMICORE AG & CO.KG
    Inventors: Ulrich Goebel, Stephan Bremm, Christian Manfred Tomanik, Wilfried Mueller, Thomas Kreuzer