Patents by Inventor Christian Meinert

Christian Meinert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8002718
    Abstract: In a shockwave system with a shockwave source for treatment of a patient with shockwaves, a control and evaluation unit for evaluating an input signal supplied directly thereto that is correlated with a blood pressure value of the patient determined during the treatment, and controls the shockwave source dependent on the input signal.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: August 23, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Gerhard Buchholtz, Jens Fehre, Bernd Granz, Martin Hoheisel, Werner Kruft, Markus Lanski, Matthias Mahler, Christian Meinert, Thomas Mertelmeier, Ralf Nanke, Manfred Rattner
  • Patent number: 7449003
    Abstract: A bellows for coupling a source of acoustic waves having an acoustic propagation medium, to a patient, has a geometrical modification in that region wherein the bellows can be seated against the patient for the introduction of acoustic waves into the patient. The geometrical modification in the propagation path of the acoustic waves generated by the source of acoustic waves shapes the acoustic waves in a designated (designed) manner. Additionally or alternatively, the bellows can have a section in the region that is formed of a different material than the rest of the bellows.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: November 11, 2008
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jens Fehre, Bernd Granz, Christian Meinert, Ralf Nanke
  • Patent number: 7438695
    Abstract: A shockwave system for treatment of a patient has a detection unit for detection of an indicator correlated with the calmness of the patient, and a device that is operable dependent on the indicator that increases the calmness of the patient. In a method for operation of a shockwave system for treatment of a patient, an indicator correlated with the calmness of the patient is detected and a measure to increase the calmness of the patient is taken dependent on the indicator.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: October 21, 2008
    Assignee: Siemens Aktiengesellschaft
    Inventors: Gerhard Buchholtz, Jens Fehre, Bernd Granz, Martin Hoheisel, Werner Kruft, Markus Lanski, Matthias Mahler, Christian Meinert, Thomas Mertelmeier, Ralf Nanke, Manfred Rattner
  • Publication number: 20070038159
    Abstract: A shockwave system for treatment of a patient has a detection unit for detection of an indicator correlated with the calmness of the patient, and a device that is operable dependent on the indicator that increases the calmness of the patient. In a method for operation of a shockwave system for treatment of a patient, an indicator correlated with the calmness of the patient is detected and a measure to increase the calmness of the patient is taken dependent on the indicator.
    Type: Application
    Filed: June 30, 2006
    Publication date: February 15, 2007
    Inventors: Gerhard Buchholtz, Jens Fehre, Bernd Granz, Martin Hoheisel, Werner Kruft, Markus Lanski, Matthias Mahler, Christian Meinert, Thomas Mertelmeier, Ralf Nanke, Manfred Rattner
  • Publication number: 20070025510
    Abstract: In a method for x-ray imaging given a patient containing a subject to be represented during a shockwave treatment, an image data set containing the subject and a marker is generated at a first point in time; an x-ray image showing essentially only the subject (14) and the marker is acquired at a second point in time, the x-ray image is correctly spatially associated with the image data set using the marker, the x-ray image is displayed together with information extracted from the image data set during the shockwave treatment.
    Type: Application
    Filed: June 30, 2006
    Publication date: February 1, 2007
    Inventors: Gerhard Buchholtz, Jens Fehre, Bernd Granz, Martin Hoheisel, Werner Kruft, Markus Lanski, Matthias Mahler, Christian Meinert, Thomas Mertelmeier, Ralf Nanke, Manfred Rattner
  • Publication number: 20070016113
    Abstract: In a method to determine an operating parameter of a shockwave source for the generation of a shockwave to disintegrate a calculus in a patient by a shockwave lithotripsy, a characteristic of the patient and/or of the calculus is determined before and/or during the shockwave lithotripsy and the operating parameter is automatically determined dependent on the characteristic. A device for determining an operating parameter of a shockwave source for the destruction of a calculus in a patient has an acquisition and control unit for determination and/or input of a characteristic of the patient and/or of the calculus, and for automatic determination of the operating parameter dependent on the characteristic.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 18, 2007
    Inventors: Gerhard Buchholtz, Jens Fehre, Bernd Granz, Martin Hoheisel, Werner Kruft, Markus Lanski, Matthias Mahler, Christian Meinert, Thomas Mertelmeier, Ralf Nanke, Manfred Rattner
  • Publication number: 20070016115
    Abstract: In a shockwave system with a shockwave source for treatment of a patient with shockwaves, a control and evaluation unit for evaluating an input signal supplied directly thereto that is correlated with a blood pressure value of the patient determined during the treatment, and controls the shockwave source dependent on the input signal.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 18, 2007
    Inventors: Gerhard Buchholtz, Jens Fehre, Bernd Granz, Martin Hoheisel, Werner Kruft, Markus Lanski, Matthias Mahler, Christian Meinert, Thomas Mertelmeier, Ralf Nanke, Manfred Rattner
  • Publication number: 20070016114
    Abstract: In a method to disintegrate a calculus in a patient by shockwave lithotripsy, a 3D image data set of the patient is generated in a first step; the shockwave lithotripsy is conducted in a second step; and first step and second step are conducted with an unchanged position of the patient. A lithotripsy system to disintegrate a calculus in a patient has a shockwave system to disintegrate the calculus and a 3D imaging system to generate a 3D image data set of the patient without movement of the patient.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 18, 2007
    Inventors: Gerhard Buchholtz, Jens Fehre, Bernd Granz, Martin Hoheisel, Werner Kruft, Markus Lanski, Matthias Mahler, Christian Meinert, Thomas Mertelmeier, Ralf Nanke, Manfred Rattner
  • Publication number: 20060241525
    Abstract: A shockwave system has a shockwave source that generates shockwaves for treatment of a patient wherein, after an interruption of the treatment, the shockwave energy, starting from a predeterminable energy start value, is automatically, successively increased in predeterminable energy levels to a last energy end value applied and stored before the interruption of the treatment. Such a shockwave system enables an optimized resumption of a shockwave treatment after a treatment interruption.
    Type: Application
    Filed: March 1, 2006
    Publication date: October 26, 2006
    Inventors: Markus Lanski, Christian Meinert
  • Publication number: 20060241526
    Abstract: A shockwave system has a shockwave source that generates shockwaves for a treatment of a patient. At the beginning of the treatment the shockwave energy, starting from a predeterminable energy start value, is automatically, successively increased in predeterminable energy levels to a predeterminable energy end value. Such a shockwave system enables an optimized beginning of a shockwave treatment.
    Type: Application
    Filed: March 1, 2006
    Publication date: October 26, 2006
    Inventors: Markus Lanski, Christian Meinert
  • Publication number: 20040036555
    Abstract: A bellows for coupling a source of acoustic waves having an acoustic propagation medium, to a patient, has a geometrical modification in that region wherein the bellows can be seated against the patient for the introduction of acoustic waves into the patient . The geometrical modification in the propagation path of the acoustic waves generated by the source of acoustic waves shapes the acoustic waves in a designated (designed) manner. Additionally or alternatively, the bellows can have a section in the region that is formed of a different material than the rest of the bellows.
    Type: Application
    Filed: June 10, 2003
    Publication date: February 26, 2004
    Inventors: Jens Fehre, Bernd Granz, Christian Meinert, Ralf Nanke