Patents by Inventor Christian Pannek

Christian Pannek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11614161
    Abstract: A method for determining reference values of a sensor corresponding to a disengaged operating condition or to an engaged operating condition of a hydraulically actuatable, form-locking shift element (A, F), where at least one operating parameter of the form-locking shift element (A, F) is detected with the sensor during a disengagement and during an engagement of the form-locking shift element (A, F). The method may include subdividing an operating range of the shift form-locking element (A, F) into temperature and pressure classes. The method may further include determining a deviation between a current reference value for a temperature and pressure class of the temperature and pressure classes and an adapted reference value previously determined for the temperature and pressure class. Additionally, the method may include increasing or decreasing the adapted reference value by a predefined increment based on the deviation.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: March 28, 2023
    Assignee: ZF FRIEDRICHSHAFEN AG
    Inventors: Christian Pannek, Martina Jehle
  • Patent number: 11125326
    Abstract: A method for determining reference values of a sensor is provided. The reference values correspond to a disengaged operating condition or to an engaged operating condition of a form-locking shift element (A, F). With the aid of the sensor, at least one operating parameter of the shift element (A, F) determinable during a disengagement and during an engagement of the shift element (A, F). A torque, an actuation force of the shift element (A, F), and a differential speed between shift-element halves of the shift element (A, F) are varied during the determination of the reference values of the sensor in such that the form-locking shift element (A, F) is transferred into the disengaged operating condition or into the engaged operating condition.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: September 21, 2021
    Assignee: ZF FRIEDRICHSHAFEN AG
    Inventors: Martina Jehle, Christian Pannek
  • Patent number: 11047475
    Abstract: A method for operating a transmission (3) that includes at least one form-locking shift element (A, F) with two shift-element halves is provided. The shift element (A, F) is disengaged in a first end position and is engaged in a second end position of a displaceable shift-element half. Upon detection of a sensor malfunction, a check is carried out to determine whether the shift-element half, before the malfunction of the sensor, was in an end position as demanded and was actuated by an actuation force acting in the direction of this end position. Power flow in the transmission (3) is maintained for as long as it takes for the shift-element half, starting from the current end position, to be actuated in the direction of the other end position and/or for the actuation force acting in the direction of the current end position to be less than a threshold value.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: June 29, 2021
    Assignee: ZF FRIEDRICHSHAFEN AG
    Inventors: Martina Jehle, Christian Pannek
  • Patent number: 10989299
    Abstract: A method for monitoring a signal of a sensor is provided. With the aid of the sensor, a current actuating-travel position of at least one movable shift-element half of a form-locking shift element (A, F) of a transmission (3) is detected during a disengagement or an engagement of the shift element (A, F). A malfunction of the sensor is detected when the current actuating-travel position of the movable shift-element half is located outside the actuating-travel range defined by the end positions and is spaced apart from the first end position or from the second end position by an extent greater than a threshold value. Additionally, it is determined, during a subsequent actuation of the shift element (A, F), depending on rotational speeds of components of the transmission (3), whether the movable shift-element half is located in a demanded end position.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: April 27, 2021
    Assignee: ZF FRIEDRICHSHAFEN AG
    Inventors: Martina Jehle, Daniel Zerlaut, Christian Pannek
  • Patent number: 10962104
    Abstract: A method for operating a transmission (3) is provided, which includes a hydraulic pump drivable on a transmission-input end and at least one form-locking shift element (A, F). One of the shift-element halves is displaceable between a first end position and a second end position with a hydraulic pressure of the hydraulic pump. The current position of the shift-element half is detected with a sensor and is stored as a specified end-position value if the shift-element half is located in one of the end positions, the hydraulic pump is driven, and the shift-element half is actuated, with the hydraulic pressure, towards the current end position. When the hydraulic pressure is less than a threshold value, a deviation is determined between the current position of the shift-element half and the specified end-position value. The hydraulic pressure is increased when the deviation is greater than a threshold value.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: March 30, 2021
    Assignee: ZF FRIEDRICHSHAFEN AG
    Inventors: Martina Jehle, Andreas Schmidt, Angelique Schwimmer, Christian Pannek, Daniel Zerlaut
  • Patent number: 10935129
    Abstract: A form-locking shift element may include a first shift-element half and a second shift-element half which are engageable with each other by moving at least the first shift-element half. A method for determining an operating condition of the form-locking shift element may include monitoring a position of the first shift-element half with a sensor, and, when a value of a signal generated by the sensor is greater than an applicable value and when the first shift-element half is actuated and displaced towards an engaged operating condition, determining that the shift element is sufficiently engaged to transmit a torque at the form-locking shift element. The applicable value corresponds to a defined overlap between the first and second shift-element halves that is less than an overlap when the first shift-element half is in the engaged operating condition.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: March 2, 2021
    Assignee: ZF FRIEDRICHSHAFEN AG
    Inventors: Christian Pannek, Martina Jehle
  • Publication number: 20200173546
    Abstract: A method for monitoring a signal of a sensor is provided. With the aid of the sensor, a current actuating-travel position of at least one movable shift-element half of a form-locking shift element (A, F) of a transmission (3) is detected during a disengagement or an engagement of the shift element (A, F). A malfunction of the sensor is detected when the current actuating-travel position of the movable shift-element half is located outside the actuating-travel range defined by the end positions and is spaced apart from the first end position or from the second end position by an extent greater than a threshold value. Additionally, it is determined, during a subsequent actuation of the shift element (A, F), depending on rotational speeds of components of the transmission (3), whether the movable shift-element half is located in a demanded end position.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 4, 2020
    Inventors: Martina Jehle, Daniel Zerlaut, Christian Pannek
  • Publication number: 20200173547
    Abstract: A method for determining reference values of a sensor is provided. The reference values correspond to a disengaged operating condition or to an engaged operating condition of a form-locking shift element (A, F). With the aid of the sensor, at least one operating parameter of the shift element (A, F) determinable during a disengagement and during an engagement of the shift element (A, F). A torque, an actuation force of the shift element (A, F), and a differential speed between shift-element halves of the shift element (A, F) are varied during the determination of the reference values of the sensor in such that the form-locking shift element (A, F) is transferred into the disengaged operating condition or into the engaged operating condition.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 4, 2020
    Inventors: Martina Jehle, Christian Pannek
  • Publication number: 20200173543
    Abstract: A method for operating a transmission (3) is provided, which includes a hydraulic pump drivable on a transmission-input end and at least one form-locking shift element (A, F). One of the shift-element halves is displaceable between a first end position and a second end position with a hydraulic pressure of the hydraulic pump. The current position of the shift-element half is detected with a sensor and is stored as a specified end-position value if the shift-element half is located in one of the end positions, the hydraulic pump is driven, and the shift-element half is actuated, with the hydraulic pressure, towards the current end position. When the hydraulic pressure is less than a threshold value, a deviation is determined between the current position of the shift-element half and the specified end-position value. The hydraulic pressure is increased when the deviation is greater than a threshold value.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 4, 2020
    Inventors: Martina Jehle, Andreas Schmidt, Angelique Schwimmer, Christian Pannek, Daniel Zerlaut
  • Publication number: 20200173545
    Abstract: A method for operating a transmission (3) that includes at least one form-locking shift element (A, F) with two shift-element halves is provided. The shift element (A, F) is disengaged in a first end position and is engaged in a second end position of a displaceable shift-element half. Upon detection of a sensor malfunction, a check is carried out to determine whether the shift-element half, before the malfunction of the sensor, was in an end position as demanded and was actuated by an actuation force acting in the direction of this end position. Power flow in the transmission (3) is maintained for as long as it takes for the shift-element half, starting from the current end position, to be actuated in the direction of the other end position and/or for the actuation force acting in the direction of the current end position to be less than a threshold value.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 4, 2020
    Inventors: Martina Jehle, Christian Pannek
  • Publication number: 20200173544
    Abstract: A form-locking shift element may include a first shift-element half and a second shift-element half which are engageable with each other by moving at least the first shift-element half. A method for determining an operating condition of the form-locking shift element may include monitoring a position of the first shift-element half with a sensor, and, when a value of a signal generated by the sensor is greater than an applicable value and when the first shift-element half is actuated and displaced towards an engaged operating condition, determining that the shift element is sufficiently engaged to transmit a torque at the form-locking shift element. The applicable value corresponds to a defined overlap between the first and second shift-element halves that is less than an overlap when the first shift-element half is in the engaged operating condition.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 4, 2020
    Inventors: Christian Pannek, Martina Jehle
  • Publication number: 20200173821
    Abstract: A method for determining reference values of a sensor corresponding to a disengaged operating condition or to an engaged operating condition of a hydraulically actuatable, form-locking shift element (A, F), where at least one operating parameter of the form-locking shift element (A, F) is detected with the sensor during a disengagement and during an engagement of the form-locking shift element (A, F). The method may include subdividing an operating range of the shift form-locking element (A, F) into temperature and pressure classes. The method may further include determining a deviation between a current reference value for a temperature and pressure class of the temperature and pressure classes and an adapted reference value previously determined for the temperature and pressure class. Additionally, the method may include increasing or decreasing the adapted reference value by a predefined increment based on the deviation.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 4, 2020
    Inventors: Christian Pannek, Martina Jehle