Patents by Inventor Christian Sandstedt

Christian Sandstedt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6905641
    Abstract: A method and instrument to irradiate a light adjustable lens, for example, inside a human eye, with an appropriate amount of radiation in an appropriate intensity pattern by first measuring aberrations in the optical system containing the lens; aligning a source of the modifying radiation so as to impinge the radiation onto the lens in a pattern that will null the aberrations. The quantity of the impinging radiation is controlled by controlling the intensity and duration of the irradiation. The pattern is controlled and monitored while the lens is irradiated.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: June 14, 2005
    Assignee: Calhoun Vision, Inc.
    Inventors: Ben C. Platt, Christian A. Sandstedt, James A. Ebel
  • Publication number: 20050099597
    Abstract: The invention relates to novel intraocular lenses. The lenses are capable of post-operative adjustment of their optical properties, including conversion from single focal lenses to multifocal lenses.
    Type: Application
    Filed: August 11, 2004
    Publication date: May 12, 2005
    Applicant: CALHOUN VISION
    Inventors: Christian Sandstedt, Jagdish Jethmalani, Shiao Chang
  • Patent number: 6824266
    Abstract: The present invention relates to lenses that are capable of post-fabrication power modifications. In general, the inventive lenses comprise (i) a first polymer matrix and (ii) a refraction modulating composition that is capable of stimulus-induced polymerization dispersed therein. When at least a portion of the lens is exposed to an appropriate stimulus, the refraction modulating composition forms a second polymer matrix. The amount and location of the second polymer matrix may modify a lens characteristic such as lens power by changing its refractive index and/or by altering its shape. The inventive lenses have a number of applications in the electronics and medical fields as data storage means and as medical lenses, particularly intraocular lenses, respectively.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: November 30, 2004
    Assignees: California Institute of Technology, Regents of the University of California
    Inventors: Jagdish M. Jethmalani, Daniel M. Schwartz, Julia A. Kornfield, Robert H. Grubbs, Christian A. Sandstedt
  • Patent number: 6813097
    Abstract: Novel optical elements are provided which are capable of post fabrication modifications. Specifically, the invention includes lenses, such as intraocular lens, which can undergo changes in storage modulus after fabrication.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: November 2, 2004
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Jagdish M. Jethmalani, Robert H. Grubbs, Julia A. Kornfield, Daniel M. Schwartz, Christian A. Sandstedt, Eric Pape
  • Publication number: 20040165179
    Abstract: A method of correcting aberrations in an optical system by applying a light adjustable aberration conjugator layer to a component of the system, determining the nature of the aberration, applying radiation to the conjugator layer such as to change the refraction and/or shape of the conjugator layer to compensate for the aberration, and locking in the desired optical property.
    Type: Application
    Filed: February 23, 2004
    Publication date: August 26, 2004
    Inventors: Ben C. Platt, Christian A. Sandstedt
  • Patent number: 6749632
    Abstract: The present invention relates to methods of implementing an optical element having a refraction modulating composition. The methods include using a wavefront sensor to provide an optical measurement of the optical element. The present invention also relates to systems comprising an optical element having a refraction modulating composition and a wavefront sensor.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: June 15, 2004
    Assignees: California Institute of Technology, The Regents of the University of California, Calhoun Vision, Inc.
    Inventors: Christian A. Sandstedt, Jagdish M. Jethmalani, Robert H. Grubbs, Julia A. Kornfield, Daniel M. Schwartz, Robert Maloney
  • Patent number: 6721043
    Abstract: A method of correcting aberrations in an optical system by applying a light adjustable aberration conjugator layer to a component of the system, determining the nature of the aberration, applying radiation to the conjugator layer such as to change the refraction and/or shape of the conjugator layer to compensate for the aberration, and locking in the desired optical property.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: April 13, 2004
    Assignee: Calhoun Vision, Inc.
    Inventors: Ben C. Platt, Christian A. Sandstedt
  • Publication number: 20030173691
    Abstract: The present invention relates to lenses that are capable of post-fabrication power modifications. In general, the inventive lenses comprise (i) a first polymer matrix and (ii) a refraction modulating composition that is capable of stimulus-induced polymerization dispersed therein. When at least a portion of the lens is exposed to an appropriate stimulus, the refraction modulating composition forms a second polymer matrix. The amount and location of the second polymer matrix may modify a lens characteristic such as lens power by changing its refractive index and/or by altering its shape. The inventive lenses have a number of applications in the electronics and medical fields as data storage means and as medical lenses, particularly intraocular lenses, respectively.
    Type: Application
    Filed: February 3, 2003
    Publication date: September 18, 2003
    Inventors: Jagdish M. Jethmalani, Daniel M. Schwartz, Julia A. Kornfield, Robert H. Grubbs, Christian A. Sandstedt
  • Publication number: 20030151719
    Abstract: Novel optical elements are provided which are capable of post fabrication modifications. Specifically, the invention includes lenses, such as intraocular lens, which can undergo changes in storage modulus after fabrication.
    Type: Application
    Filed: August 15, 2002
    Publication date: August 14, 2003
    Inventors: Jagdish M. Jethmalani, Robert H. Grubbs, Julia A. Kornfield, Daniel M. Schwartz, Christian A. Sandstedt, Eric Pape
  • Publication number: 20030151831
    Abstract: The invention relates to novel intraocular lenses. The lenses are capable of post-operative adjustment of their optical properties, including conversion from single focal lenses to multifocal lenses.
    Type: Application
    Filed: December 24, 2002
    Publication date: August 14, 2003
    Inventors: Christian A. Sandstedt, Jagdish M. Jethmalani, Shiao H. Chang
  • Publication number: 20030128336
    Abstract: The invention relates to a method of customizing lenses using an external stimulus such as light. Fine-tuning of the lens to match the precise optical requirements using the same lens is also possible. The lenses are self-contained and do not require the addition or removal of significant portions of the lens to achieve customization.
    Type: Application
    Filed: August 5, 2002
    Publication date: July 10, 2003
    Inventors: Jagdish M. Jethmalani, Christian A. Sandstedt, Robert H. Grubbs
  • Publication number: 20030093150
    Abstract: The present invention relates to lenses that are capable of post-fabrication power modifications. In general, the inventive lenses comprise (i) a first polymer matrix and (ii) a refraction modulating composition that is capable of stimulus-induced polymerization dispersed therein. When at least a portion of the lens is exposed to an appropriate stimulus, the refraction modulating composition forms a second polymer matrix. The amount and location of the second polymer matrix may modify a lens characteristic such as lens power by changing its refractive index and/or by altering its shape. The inventive lenses have a number of applications in the electronics and medical fields as data storage means and as medical lenses, particularly intraocular lenses, respectively.
    Type: Application
    Filed: June 18, 2002
    Publication date: May 15, 2003
    Inventors: Jagdish M. Jethmalani, Daniel M. Schwartz, Julia A. Kornfield, Robert H. Grubbs, Christian A. Sandstedt
  • Publication number: 20030090624
    Abstract: The present invention relates to lenses that are capable of post-fabrication power modifications. In general, the inventive lenses comprise (i) a first polymer matrix and (ii) a refraction modulating composition that is capable of stimulus-induced polymerization dispersed therein. When at least a portion of the lens is exposed to an appropriate stimulus, the refraction modulating composition forms a second polymer matrix. The amount and location of the second polymer matrix may modify a lens characteristic such as lens power by changing its refractive index and/or by altering its shape. The inventive lenses have a number of applications in the electronics and medical fields as data storage means and as medical lenses, particularly intraocular lenses, respectively.
    Type: Application
    Filed: June 18, 2002
    Publication date: May 15, 2003
    Inventors: Jagdish M. Jethmalani, Daniel M. Schwartz, Julia A. Kornfield, Robert H. Grubbs, Christian A. Sandstedt
  • Publication number: 20030090013
    Abstract: The present invention relates to lenses that are capable of post-fabrication power modifications. In general, the inventive lenses comprise (i) a first polymer matrix and (ii) a refraction modulating composition that is capable of stimulus-induced polymerization dispersed therein. When at least a portion of the lens is exposed to an appropriate stimulus, the refraction modulating composition forms a second polymer matrix. The amount and location of the second polymer matrix may modify a lens characteristic such as lens power by changing its refractive index and/or by altering its shape. The inventive lenses have a number of applications in the electronics and medical fields as data storage means and as medical lenses, particularly intraocular lenses, respectively.
    Type: Application
    Filed: June 18, 2002
    Publication date: May 15, 2003
    Inventors: Jagdish M. Jethmalani, Daniel M. Schwartz, Julia A. Kornfield, Robert H. Grubbs, Christian A. Sandstedt
  • Publication number: 20030048411
    Abstract: A method for evaluating the effectiveness of adjustable optical implants is provided The implants are first inserted into a test subject. The implant is then exposed to an external stimulus, such as light, to induce a change in the properties of the implant. The implants are then evaluated to determine the nature and extent of the change in properties.
    Type: Application
    Filed: July 10, 2002
    Publication date: March 13, 2003
    Inventors: Jagdish M. Jethmalani, Robert K. Maloney, Robert H. Grubbs, Julia A. Kornfield, Christian A. Sandstedt, Daniel M. Schwartz
  • Publication number: 20020169505
    Abstract: The present invention relates to a method for creating shaped implants, such as intraocular lenses in vivo, as well as the novel implants themselves. Utilizing the method of the invention, it is possible to create an implant in vivo and to adjust either the physical properties such as refractive index, viscosity, etc., mechanical properties such as modulus, tensile strength, tear, etc., or the shape of the implant by noninvasive means. For example, using the method of the patent it is possible to create an intraocular lens in vivo and then adjust the shape and power of the lens through no invasion means. The novel implants are also addressed in this application.
    Type: Application
    Filed: March 21, 2002
    Publication date: November 14, 2002
    Inventors: Jagdish M. Jethmalani, Shiao H. Chang, Robert H. Grubbs, Julia A. Kornfield, Daniel M. Schwartz, Christian A. Sandstedt, F. Richard Christ
  • Publication number: 20020167735
    Abstract: The present invention relates to lenses that are capable of post-fabrication power modifications. In general, the inventive lenses comprise (i) a first polymer matrix and (ii) a refraction modulating composition that is capable of stimulus-induced polymerization dispersed therein. When at least a portion of the lens is exposed to an appropriate stimulus, the refraction modulating composition forms a second polymer matrix. The amount and location of the second polymer matrix may modify a lens characteristic such as lens power by changing its refractive index and/or by altering its shape. The inventive lenses have a number of applications in the electronics and medical fields as data storage means and as medical lenses, particularly intraocular lenses, respectively.
    Type: Application
    Filed: November 21, 2001
    Publication date: November 14, 2002
    Inventors: Jagdish M. Jethmalani, Robert H. Grubbs, Christian A. Sandstedt, Julia A. Kornfield, Daniel M. Schwartz, Eric Pape
  • Patent number: 6450642
    Abstract: The present invention relates to lenses that are capable of post-fabrication power modifications. In general, the inventive lenses comprise (i) a first polymer matrix and (ii) a refraction modulating composition that is capable of stimulus-induced polymerization dispersed therein. When at least a portion of the lens is exposed to an appropriate stimulus, the refraction modulating composition forms a second polymer matrix. The amount and location of the second polymer matrix may modify a lens characteristic such as lens power by changing its refractive index and/or by altering its shape. The inventive lenses have a number of applications in the electronics and medical fields as data storage means and as medical lenses, particularly intraocular lenses, respectively.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: September 17, 2002
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Jagdish M. Jethmalani, Robert H. Grubbs, Christian A. Sandstedt, Julia A. Kornfield, Daniel M. Schwartz
  • Publication number: 20020100990
    Abstract: A method and instrument to irradiate a light adjustable lens, for example, inside a human eye, with an appropriate amount of radiation in an appropriate intensity pattern by first measuring aberrations in the optical system containing the lens; aligning a source of the modifying radiation so as to impinge the radiation onto the lens in a pattern that will null the aberrations. The quantity of the impinging radiation is controlled by controlling the intensity and duration of the irradiation. The pattern is controlled and monitored while the lens is irradiated.
    Type: Application
    Filed: September 26, 2001
    Publication date: August 1, 2002
    Inventors: Ben C. Platt, Christian A. Sandstedt, James A. Ebel
  • Publication number: 20020060786
    Abstract: A method of correcting aberrations in an optical system by applying a light adjustable aberration conjugator layer to a component of the system, determining the nature of the aberration, applying radiation to the conjugator layer such as to change the refraction and/or shape of the conjugator layer to compensate for the aberration, and locking in the desired optical property.
    Type: Application
    Filed: October 11, 2001
    Publication date: May 23, 2002
    Inventors: Ben C. Platt, Christian A. Sandstedt