Patents by Inventor Christian Schippel

Christian Schippel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230261040
    Abstract: A semiconductor device includes a substrate layer having a floating base region of a first conductivity type. A first well of a second conductivity type and the floating base region form a first pn junction. A first conductive structure is electrically connected to the first well. A barrier region of the second conductivity type and the floating base region form an auxiliary pn junction. A second conductive structure is electrically connected to the floating base region through a rectifying structure. A pull-down structure is configured to produce a voltage drop between the barrier region and the second conductive structure, when charge carriers cross the auxiliary pn junction.
    Type: Application
    Filed: February 16, 2023
    Publication date: August 17, 2023
    Inventors: Christian Schippel, Dirk Priefert, Felix Simon Winterer, Remigiusz Viktor Boguszewicz
  • Publication number: 20230238459
    Abstract: A semiconductor device includes a semiconductor layer, an electronic element and laterally separated trench isolation structures. The semiconductor layer includes an element region having an inner region, an outer region on opposite sides of the inner region, and a transition region that laterally separates the inner region and the outer region. The electronic element includes a first doped region formed in the inner region and a second doped region formed in the outer region. The trench isolation structures are formed at least in the transition region. Each trench isolation structure extends from a first surface of the semiconductor layer into the semiconductor layer.
    Type: Application
    Filed: January 20, 2023
    Publication date: July 27, 2023
    Inventors: Lars Müller-Meskamp, Ralf Rudolf, Annett Winzer, Christian Schippel, Thomas Künzig, Dirk Priefert
  • Publication number: 20230140348
    Abstract: A semiconductor device includes a semiconductor layer with an inner portion, an outer portion laterally surrounding the inner portion, and a transition portion laterally surrounding the inner portion and separating the inner portion and the outer portion. A first electric element includes a first doped region formed in the inner portion and a second doped region formed in the outer portion. The first electric element is configured to at least temporarily block a voltage applied between the first doped region and the second doped region. A trench isolation structure extends from a first surface into the semiconductor layer and segments at least one of the inner portion, the transition portion, and the outer portion.
    Type: Application
    Filed: October 21, 2022
    Publication date: May 4, 2023
    Inventors: Lars Müller-Meskamp, Ralf Rudolf, Dirk Priefert, Annett Winzer, Thomas Künzig, Christian Schippel
  • Patent number: 10886419
    Abstract: A method includes providing a semiconductor structure comprising a varactor region and a field effect transistor region. The varactor region includes a body region in a semiconductor material that is doped to have a first conductivity type. A gate-first process is performed by forming a gate stack over the semiconductor structure. The gate stack includes a layer of gate insulation material and a layer of work function adjustment metal positioned over the layer of gate insulation material. The gate stack is patterned to define a first gate structure over the varactor region and a second gate structure over the field effect transistor region. A source region and a drain region are formed in the field effect transistor region adjacent the second gate structure. The source region and the drain region are doped to have a second conductivity type opposite to the first conductivity type.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: January 5, 2021
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Alexandru Romanescu, Christian Schippel, Nicolas Sassiat
  • Patent number: 10497803
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to fully depleted silicon on insulator (SOI) semiconductor structures and methods of manufacture. The structure includes: a gate structure formed over a semiconductor material; a source region adjacent to the gate structure; a drain region remote from the gate structure; and a drift region separating the gate structure from the drain region. The drift region includes an epitaxial material grown on the semiconductor material which increases the thickness of the semiconductor material in the drift region.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: December 3, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ignasi Cortes Mayol, Christian Schippel, Alban Zaka, Tom Herrmann, El Mehdi Bazizi
  • Publication number: 20190051747
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to fully depleted silicon on insulator (SOI) semiconductor structures and methods of manufacture. The structure includes: a gate structure formed over a semiconductor material; a source region adjacent to the gate structure; a drain region remote from the gate structure; and a drift region separating the gate structure from the drain region. The drift region includes an epitaxial material grown on the semiconductor material which increases the thickness of the semiconductor material in the drift region.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 14, 2019
    Inventors: Ignasi CORTES MAYOL, Christian SCHIPPEL, Alban ZAKA, Tom HERRMANN, El Mehdi BAZIZI
  • Patent number: 10170614
    Abstract: A method of forming a semiconductor device includes forming a first well and a second well in a substrate, wherein the first well is doped with dopants of a first conductivity type and the second well is doped with dopants of a second conductivity type. A third well is formed within the first well, and a gate structure is formed above the substrate, the gate structure partially overlying at least the first and second wells. A first epi region is formed on the third well, wherein the first epi region is doped with second dopants of the second conductivity type, and a drain region is formed that is electrically coupled to the second well.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: January 1, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Christian Schippel, Alban Zaka, Ignasi Cortes Mayol
  • Publication number: 20180254343
    Abstract: A method of forming a semiconductor device includes forming a first well and a second well in a substrate, wherein the first well is doped with dopants of a first conductivity type and the second well is doped with dopants of a second conductivity type. A third well is formed within the first well, and a gate structure is formed above the substrate, the gate structure partially overlying at least the first and second wells. A first epi region is formed on the third well, wherein the first epi region is doped with second dopants of the second conductivity type, and a drain region is formed that is electrically coupled to the second well.
    Type: Application
    Filed: May 4, 2018
    Publication date: September 6, 2018
    Inventors: Christian Schippel, Alban Zaka, Ignasi Cortes Mayol
  • Patent number: 10056481
    Abstract: The present disclosure provides a semiconductor device structure including an active region having a semiconductor-on-insulator (SOI) configuration, a semiconductor device of lateral double-diffused MOS (LDMOS) type, a dual ground plane region formed by two well regions which are counter-doped to each other, the dual ground plane region extending below the semiconductor device, and a deep well region extending below the dual ground plane region. Herein, the semiconductor device of LDMOS type comprises a gate structure formed on the active region, a source region and a drain region formed in the active region at opposing sides of the gate structure, and a channel region and a drift region, both of which being formed in the active region and defining a channel drift junction, wherein the channel drift junction is overlain by the gate structure.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: August 21, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Christian Schippel, Andrei Sidelnicov, Gerd Zschaetzsch
  • Patent number: 10038091
    Abstract: The present disclosure provides a semiconductor device including a substrate, a first well and a second well formed in the substrate, the first well being doped with dopants of a first conductivity type and the second well being doped with dopants of a second conductivity type, a third well within the first well, a gate structure partially formed over the first and second wells, and a first epi region on the third well and a drain region electrically coupled to the second well, the first epi region being doped with dopants of the second conductivity type.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: July 31, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Christian Schippel, Alban Zaka, Ignasi Cortes Mayol
  • Publication number: 20180204944
    Abstract: The present disclosure provides a semiconductor device structure including an active region having a semiconductor-on-insulator (SOI) configuration, a semiconductor device of lateral double-diffused MOS (LDMOS) type, a dual ground plane region formed by two well regions which are counter-doped to each other, the dual ground plane region extending below the semiconductor device, and a deep well region extending below the dual ground plane region. Herein, the semiconductor device of LDMOS type comprises a gate structure formed on the active region, a source region and a drain region formed in the active region at opposing sides of the gate structure, and a channel region and a drift region, both of which being formed in the active region and defining a channel drift junction, wherein the channel drift junction is overlain by the gate structure.
    Type: Application
    Filed: January 13, 2017
    Publication date: July 19, 2018
    Inventors: Christian Schippel, Andrei Sidelnicov, Gerd Zschaetzsch
  • Publication number: 20180198000
    Abstract: A method includes providing a semiconductor structure comprising a varactor region and a field effect transistor region. The varactor region includes a body region in a semiconductor material that is doped to have a first conductivity type. A gate-first process is performed by forming a gate stack over the semiconductor structure. The gate stack includes a layer of gate insulation material and a layer of work function adjustment metal positioned over the layer of gate insulation material. The gate stack is patterned to define a first gate structure over the varactor region and a second gate structure over the field effect transistor region. A source region and a drain region are formed in the field effect transistor region adjacent the second gate structure. The source region and the drain region are doped to have a second conductivity type opposite to the first conductivity type.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 12, 2018
    Inventors: Alexandru Romanescu, Christian Schippel, Nicolas Sassiat
  • Patent number: 9960284
    Abstract: A semiconductor structure includes a varactor and a field effect transistor. The varactor includes a body region that includes a semiconductor material and a first gate structure over the body region. The body region is doped to have a first conductivity type. The first gate structure includes a first gate insulation layer and a first work function adjustment metal layer. The field effect transistor includes a source region, a channel region, a drain region and a second gate structure over the channel region. The source region and the drain region are doped to have a second conductivity type that is opposite to the first conductivity type. The second gate structure includes a second gate insulation layer and a second work function adjustment metal layer. The first work function adjustment metal layer and the second work function adjustment metal layer include substantially the same metal.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: May 1, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Alexandru Romanescu, Christian Schippel, Nicolas Sassiat
  • Publication number: 20170336467
    Abstract: A test structure for a semiconductor device, comprising a device under test including a transistor, the transistor having a gate electrode, a source electrode, a drain electrode and a bulk electrode, a first fuse and a second fuse provided in series, wherein one terminal of the first fuse is connected to the gate electrode, one terminal of the second fuse is connected to the bulk electrode, the other terminal of the first fuse and the other terminal of the second fuse being connected to each other, a first input/output pad connected to the first terminal of the first fuse and to the gate electrode of the transistor, a second input/output pad connected to the first terminal of the second fuse and to the bulk electrode of the transistor, a third input/output pad connected to the second terminal of the first fuse and the second terminal of the second fuse.
    Type: Application
    Filed: May 17, 2016
    Publication date: November 23, 2017
    Inventors: Ricardo Pablo. Mikalo, Stefan Richter, Christian Schippel, Michael Zier
  • Publication number: 20170317209
    Abstract: The present disclosure provides a semiconductor device including a substrate, a first well and a second well formed in the substrate, the first well being doped with dopants of a first conductivity type and the second well being doped with dopants of a second conductivity type, a third well within the first well, a gate structure partially formed over the first and second wells, and a first epi region on the third well and a drain region electrically coupled to the second well, the first epi region being doped with dopants of the second conductivity type.
    Type: Application
    Filed: June 30, 2016
    Publication date: November 2, 2017
    Inventors: Christian Schippel, Alban Zaka, Ignasi Cortes Mayol
  • Publication number: 20170125610
    Abstract: A semiconductor structure includes a varactor and a field effect transistor. The varactor includes a body region that includes a semiconductor material and a first gate structure over the body region. The body region is doped to have a first conductivity type. The first gate structure includes a first gate insulation layer and a first work function adjustment metal layer. The field effect transistor includes a source region, a channel region, a drain region and a second gate structure over the channel region. The source region and the drain region are doped to have a second conductivity type that is opposite to the first conductivity type. The second gate structure includes a second gate insulation layer and a second work function adjustment metal layer. The first work function adjustment metal layer and the second work function adjustment metal layer include substantially the same metal.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 4, 2017
    Inventors: Alexandru Romanescu, Christian Schippel, Nicolas Sassiat
  • Patent number: 9530770
    Abstract: Integrated circuits having resistor structures formed from gate metal and methods for fabricating such integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with a resistor area and a transistor area. The method deposits a gate metal over the resistor area and the transistor area of the semiconductor substrate, and the gate metal forms a gate metal layer in the resistor area. The method includes etching the gate metal to form a resistor structure from the gate metal layer in the resistor area. Further, the method includes forming contacts to the resistor structure in the resistor area.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: December 27, 2016
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Alexandru Romanescu, Gerd Zschätzsch, Christian Schippel
  • Patent number: 9515155
    Abstract: E-fuses are used in integrated circuits in order to permit real-time dynamic reprogramming of the circuit after manufacturing. An e-fuse is hereby proposed wherein the metal element adapted to be blown upon passage of a current is not comprised of a silicide layer but is rather a metal layer above which a semiconductor layer is formed. A dielectric layer is then formed on the semiconductor layer, in order to prevent metal silicide from forming over the metal layer. The process of manufacturing the e-fuse can be easily integrated in an HKMG manufacturing flow. In particular, fully silicided metal gates may be manufactured in conjunction with the e-fuse, without jeopardizing the correct functioning of the e-fuse.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: December 6, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Roman Boschke, Stefan Flachowsky, Maciej Wiatr, Christian Schippel
  • Publication number: 20150311272
    Abstract: Integrated circuits having resistor structures formed from gate metal and methods for fabricating such integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with a resistor area and a transistor area. The method deposits a gate metal over the resistor area and the transistor area of the semiconductor substrate, and the gate metal forms a gate metal layer in the resistor area. The method includes etching the gate metal to form a resistor structure from the gate metal layer in the resistor area. Further, the method includes forming contacts to the resistor structure in the resistor area.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 29, 2015
    Applicant: GLOBALFOUNDRIES, Inc.
    Inventors: Alexandru Romanescu, Gerd Zschätzsch, Christian Schippel
  • Publication number: 20150179753
    Abstract: E-fuses are used in integrated circuits in order to permit real-time dynamic reprogramming of the circuit after manufacturing. An e-fuse is hereby proposed wherein the metal element adapted to be blown upon passage of a current is not comprised of a silicide layer but is rather a metal layer above which a semiconductor layer is formed. A dielectric layer is then formed on the semiconductor layer, in order to prevent metal silicide from forming over the metal layer. The process of manufacturing the e-fuse can be easily integrated in an HKMG manufacturing flow. In particular, fully silicided metal gates may be manufactured in conjunction with the e-fuse, without jeopardizing the correct functioning of the e-fuse.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Applicant: Globalfoundries Inc.
    Inventors: Roman Boschke, Stefan Flachowsky, Maciej Wiatr, Christian Schippel