Patents by Inventor Christian SKUPIN

Christian SKUPIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250047843
    Abstract: Video codec for supporting temporal inter-prediction, configured to perform padding of an area of a referenced portion of a reference picture which extends beyond a border of the reference picture, which referenced portion is referenced by an inter predicted block of a current picture by selecting one of a plurality of intra-prediction modes, and padding the area using the selected intra-prediction mode.
    Type: Application
    Filed: October 22, 2024
    Publication date: February 6, 2025
    Inventors: Jens BRANDENBURG, Tobias HINZ, Adam WIECKOWSKI, Jackie MA, Valeri GEORGE, Christian LEHMANN, Heiko SCHWARZ, Detlev MARPE, Thomas WIEGAND, Robert SKUPIN, Yago SÁNCHEZ DE LA FUENTE, Thomas SCHIERL
  • Publication number: 20250030853
    Abstract: A video decoder for decoding an encoded video signal including encoded picture data and indication data of a picture of a video to reconstruct the picture of the video is provided. The video decoder includes an interface configured for receiving the encoded video signal, and a data decoder configured for reconstructing the picture of the video by decoding the encoded picture data using the indication data. The picture is partitioned into a plurality of coding areas. One or more coding areas of the plurality of coding areas include two or more coding tree units of the plurality of coding tree units, wherein each coding area of the one or more coding areas which includes two or more coding tree units exhibits a coding order for the two or more coding tree units of the coding area.
    Type: Application
    Filed: October 4, 2024
    Publication date: January 23, 2025
    Inventors: Valeri GEORGE, Tobias HINZ, Jackie MA, Yago SÁNCHEZ DE LA FUENTE, Robert SKUPIN, Thomas SCHIERL, Jens BRANDENBURG, Christian LEHMANN, Adam WIECKOWSKI, Heiko SCHWARZ, Detlev MARPE, Thomas WIEGAND
  • Publication number: 20240280710
    Abstract: A method is disclosed for position determination by receiving GNSS signals using a GNSS receiver including a plurality of channels, which can be connected in a data-conducting manner to a common Kalman filter to form a plurality of vector tracking loops such that each received GNSS signal can be processed in an iterative manner using a corresponding vector tracking loop while taking into account the measurements returned by the common Kalman filter.
    Type: Application
    Filed: February 20, 2024
    Publication date: August 22, 2024
    Inventors: Christian Skupin, David Oertel, Nikolay Mikhaylov, Vishwanath Malipatil
  • Publication number: 20240272304
    Abstract: A method for detecting GNSS spoofing by way of GNSS receiver of a localization system is disclosed. The GNSS receiver includes an antenna for receiving GNSS signals. The GNSS signals are emitted by at least one GNSS satellite and are received by the GNSS receiver in such a way that each GNSS signal is shifted by a frequency difference. The method includes a) receiving a GNSS signal by way of the antenna, b) measuring the frequency difference between the frequency of the GNSS signal emitted by a GNSS satellite and the frequency of the GNSS signal received by the antenna, c) determining the rate of change of the frequency difference by using motion change information relating to the GNSS receiver, d) checking if the determined rate of change corresponds to a rate of change characteristic of satellite signal reception, and e) detecting GNSS spoofing if the determined rate of change does not match satellite signal reception.
    Type: Application
    Filed: May 19, 2022
    Publication date: August 15, 2024
    Inventors: Christian Skupin, David Oertel
  • Publication number: 20230375717
    Abstract: A method for predicting GNSS geolocation quality on roads in urban environments given the propagation of objects obstructing GNSS signals is disclosed. The method includes step a) providing a model for determining the at least one geolocation quality parameter as a function of input values, wherein the model is designed for at least the following input values: (i) at least one DOP value describing the quality of the present geometrical satellite constellation under line-of-sight conditions, and (ii) at least one characteristic environmental parameter considered in the model independently of the DOP value and describing a local influence of objects on the propagation of GNSS signals. The method further includes step b) determining a location and/or a time at which location and/or time the GNSS geolocation quality is to be predicted.
    Type: Application
    Filed: May 16, 2023
    Publication date: November 23, 2023
    Inventor: Christian Skupin
  • Publication number: 20220404512
    Abstract: The disclosure relates to a method for GNSS-based localization of a vehicle, comprising at least the following steps: a) receiving GNSS-satellite signals from GNSS satellites and determining at least one item of distance information about the distance between the vehicle and the GNSS satellite emitting the relevant GNSS-satellite signal, b) determining at least one item of environmental information about the environment around the vehicle using image information determined using at least one environment sensor of the vehicle, which is capable of capturing images of at least part of the environment around the vehicle from different perspectives, c) determining at least one item of correction information using the at least one environmental information item, and d) correcting the at least one distance information item by means of the at least one correction information item.
    Type: Application
    Filed: June 13, 2022
    Publication date: December 22, 2022
    Inventors: Christian Skupin, Wen Ren
  • Publication number: 20220276388
    Abstract: The disclosure relates to a method for determining a model for describing at least one environment-specific GNSS profile, comprising at least the following steps: a) receiving at least one measurement data record, which describes at least one GNSS parameter of a GNSS signal between a GNSS satellite and a GNSS receiver, b) using the measurement data record received in step a) to determine at least one model parameter for a model for describing the at least one environment-specific GNSS profile, and c) providing the model for describing the at least one environment-specific GNSS profile.
    Type: Application
    Filed: July 15, 2020
    Publication date: September 1, 2022
    Inventors: Christian Skupin, Hanno Homann, Moritz Michael Knorr
  • Publication number: 20220244407
    Abstract: The disclosure relates to a method for generating a three-dimensional environment model using GNSS measurements, comprising at least the following steps: a) receiving a plurality of measuring data sets, each of which describes a propagation path of a GNSS signal between a GNSS satellite and a GNSS receiver; b) selecting from the plurality of measuring data sets individual measuring data sets which meet a first selection criterion, the first selection criterion being characteristic for the presence of an object boundary along the propagation path of the GNSS signal; and c) capturing an object boundary of an object in the environment of at least one GNSS receiver using the measuring data sets selected.
    Type: Application
    Filed: July 8, 2020
    Publication date: August 4, 2022
    Inventors: Christian Skupin, Nikolay Mikhaylov, Wen Ren, Andreas Hinrichs
  • Patent number: 11333504
    Abstract: A method is described for updating a digital map for vehicle navigation. The method includes a step of determining an adjustment signal for adjusting a detection range of an environment sensor of a vehicle to a section of an environment of the vehicle that corresponds to an area of the digital map to be updated, using an item of information about the area to be updated, and the method including a step of supplying area data for updating the digital map, the area data representing an image of the section of the environment detected by the environment sensor.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: May 17, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Patent number: 11105933
    Abstract: A method for determining an environment-specific data profile for a satellite-based determination of a position of a vehicle includes ascertaining the position of the vehicle and receiving satellite data. The environment-specific data profile is determined using the ascertained position of the vehicle, a satellite position of a satellite from the received satellite data, and a path length of a satellite signal between the satellite position and the vehicle position determined from the satellite data.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: August 31, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Christian Skupin, Philip Wette
  • Patent number: 10872477
    Abstract: A method for uploading data of a motor vehicle, including the steps: acquiring surrounding-area data of the motor vehicle with the aid of a sensor device; generating a locational reference for the acquired surrounding-area data; evaluating the acquired surrounding-area data by comparing the acquired surrounding-area data to known surrounding-area data of a data storage unit of a server device; and uploading the acquired surrounding-area data to the server device (40) as a function of the evaluation.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: December 22, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20200132475
    Abstract: A method is described for updating a digital map for vehicle navigation. The method includes a step of determining an adjustment signal for adjusting a detection range of an environment sensor of a vehicle to a section of an environment of the vehicle that corresponds to an area of the digital map to be updated, using an item of information about the area to be updated, and the method including a step of supplying area data for updating the digital map, the area data representing an image of the section of the environment detected by the environment sensor.
    Type: Application
    Filed: March 14, 2018
    Publication date: April 30, 2020
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Patent number: 10591913
    Abstract: A method for transmitting, receiving and processing data values, including detecting first data values, which represent at least one first transition from an automated operation of at least one first automated vehicle to a manual operation of the at least one first automated vehicle. The method also includes transmitting the first data values, receiving the first data values and a step of processing the first data values, and a transmission device and a receiving device for carrying out the method for transmitting, receiving and processing data values.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: March 17, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Patent number: 10591304
    Abstract: A method of an automated motor vehicle for optimized communication from a server of localization reference data for a defined location includes a sensor of the motor vehicle capturing driving environment data, linking the captured driving environment data to location information, based on the linking, localizing the motor vehicle at an achieved localization accuracy, identifying a setpoint localization accuracy at which an operation of the motor vehicle is to be performed, signaling to the server the achieved localization accuracy, and transmitting to the server a request for the localization reference data at the setpoint localization accuracy based on the signaled achieved localization accuracy.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: March 17, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Patent number: 10464573
    Abstract: A method for providing driving-environment data for a driver-assist system on board a motor vehicle includes determining a route to be traveled; providing driving-environment data along the determined route, driving-environment data along an initial section of a road deviating from the route additionally being provided; determining that the motor vehicle is traveling on the road; determining a new route that includes the traveled road; and providing driving-environment data along the new route.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: November 5, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20190265365
    Abstract: A method for determining an environment-specific data profile for a satellite-based determination of a position of a vehicle includes ascertaining the position of the vehicle and receiving satellite data. The environment-specific data profile is determined using the ascertained position of the vehicle, a satellite position of a satellite from the received satellite data, and a path length of a satellite signal between the satellite position and the vehicle position determined from the satellite data.
    Type: Application
    Filed: February 20, 2019
    Publication date: August 29, 2019
    Inventors: Christian Skupin, Philip Wette
  • Publication number: 20180357839
    Abstract: A method for uploading data of a motor vehicle, including the steps: acquiring surrounding-area data of the motor vehicle with the aid of a sensor device; generating a locational reference for the acquired surrounding-area data; evaluating the acquired surrounding-area data by comparing the acquired surrounding-area data to known surrounding-area data of a data storage unit of a server device; and uploading the acquired surrounding-area data to the server device (40) as a function of the evaluation.
    Type: Application
    Filed: May 13, 2016
    Publication date: December 13, 2018
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20180245928
    Abstract: A method of an automated motor vehicle for optimized communication from a server of localization reference data for a defined location includes a sensor of the motor vehicle capturing driving environment data, linking the captured driving environment data to location information, based on the linking, localizing the motor vehicle at an achieved localization accuracy, identifying a setpoint localization accuracy at which an operation of the motor vehicle is to be performed, signaling to the server the achieved localization accuracy, and transmitting to the server a request for the localization reference data at the setpoint localization accuracy based on the signaled achieved localization accuracy.
    Type: Application
    Filed: June 17, 2016
    Publication date: August 30, 2018
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20180050703
    Abstract: A method for providing driving-environment data for a driver-assist system on board a motor vehicle includes determining a route to be traveled; providing driving-environment data along the determined route, driving-environment data along an initial section of a road deviating from the route additionally being provided; determining that the motor vehicle is traveling on the road; determining a new route that includes the traveled road; and providing driving-environment data along the new route.
    Type: Application
    Filed: February 5, 2016
    Publication date: February 22, 2018
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20170168484
    Abstract: A method for transmitting, receiving and processing data values, including detecting first data values, which represent at least one first transition from an automated operation of at least one first automated vehicle to a manual operation of the at least one first automated vehicle. The method also includes transmitting the first data values, receiving the first data values and a step of processing the first data values, and a transmission device and a receiving device for carrying out the method for transmitting, receiving and processing data values.
    Type: Application
    Filed: December 13, 2016
    Publication date: June 15, 2017
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel