Patents by Inventor Christian Stoller

Christian Stoller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160320521
    Abstract: Methods and downhole tools involving neutron-absorbing gamma ray windows are provided. One such method involves emitting neutrons from a neutron source in a downhole tool in a well into a surrounding geological formation. This may produce formation gamma rays through interactions between the neutrons and elements of the geological formation. The formation gamma rays may be detected by a gamma ray detector when the gamma rays pass via a gamma ray window that includes a neutron-absorbing material disposed in a substrate material of the downhole tool. The gamma ray window may be both more transmissive of gamma rays than the substrate material and less transmissive of neutrons than a window without the neutron-absorbing material. This may decrease a neutron flux that would otherwise reach the gamma ray detector and the tool materials surrounding it and thus would otherwise lead to a background signal contaminating a signal corresponding to the detected formation gamma rays.
    Type: Application
    Filed: December 17, 2014
    Publication date: November 3, 2016
    Applicant: Schlumberger Technology Corporation
    Inventors: Marie-Laure Mauborgne, Ahmed Amine Mahjoub, Markus Berheide, Christian Stoller
  • Publication number: 20160306070
    Abstract: Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.
    Type: Application
    Filed: June 27, 2016
    Publication date: October 20, 2016
    Inventors: Matthieu Simon, Peter Wraight, Christian Stoller, Kenneth E. Stephenson, Andrew Bazarko
  • Publication number: 20160274038
    Abstract: A downhole densitometer is used to determine one or more characteristics of a flowing fluid. The densitometer has one or more downhole x-ray sources and one or more downhole x-ray detectors. A fluid is allowed to flow past the x-ray sources. X-rays emitted by the x-ray sources and that have travelled through the flowing fluid are detected by the x-ray detectors. Characteristics of the flowing fluid are determined based on the detected x-rays. The densitometer may also have reference detectors used to measure a reference signal. The measured reference signal is used to normalize source emissions. The densitometer may be used as a permanent monitor and it may be used in conjunction with other sensors such as a flow-rate sensor or a capacitance sensor. The x-ray source may be, for example, a pyroelectric source, a radioisotopic source, or a traditional x-ray tube source.
    Type: Application
    Filed: March 19, 2015
    Publication date: September 22, 2016
    Inventors: Dominic Joseph Brady, Reza Taherian, Gary Oddie, Christian Stoller
  • Publication number: 20160245948
    Abstract: A method for evaluating wellbore conduit condition includes using measurements of at least one of (i) inelastic gamma rays made during emission a burst of neutrons into the conduit from within the conduit at at least one spaced apart location from a position of the emission and (ii) epithermal neutrons or capture gamma rays therefrom detected at at least two spaced apart locations from the position of the emission within a selected time after the emission. The at least one of the measurements of inelastic gamma rays and epithermal neutron or capture gamma ray counts are characterized to estimate an amount of loss of iron in the conduit.
    Type: Application
    Filed: May 4, 2016
    Publication date: August 25, 2016
    Inventors: Sicco Beekman, Tong Zhou, David Alan Alan, Christian Stoller
  • Patent number: 9417355
    Abstract: Composition-matched downhole tools and methods for using such tools are provided. One such method includes emitting neutrons using a neutron source in the downhole tool to generate formation gamma rays in a surrounding formation. At the same time, however, some of the neutrons may interact with different parts of the downhole tool to form tool gamma rays. The gamma ray spectra of at least some of the formation gamma rays and the tool gamma rays may be detected using a gamma ray detector. The tool gamma rays from the different parts of the tool may have a substantially similar spectral shape. As such, a processor may be used to analyze the spectra of the tool gamma rays using a single tool background standard, thereby simplifying the analysis and improving the precision of the results.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: August 16, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Christian Stoller, Fabien Haranger, James Grau, Jeffrey Miles, Markus Berheide
  • Publication number: 20160223708
    Abstract: A method for determining a petrophysical property of a formation includes detecting radiation events resulting from imparting neutrons into the formation at an energy level of at least 1 MeV. The petrophysical property is determined from an elastic scattering cross section of the formation. The elastic scattering cross-section related to a number of detected radiation events.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 4, 2016
    Inventors: Tong Zhou, Christian Stoller
  • Patent number: 9394781
    Abstract: Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: July 19, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Matthieu Simon, Peter Wraight, Christian Stoller, Kenneth E. Stephenson, Andrew Bazarko
  • Publication number: 20160195636
    Abstract: Systems and methods for estimating absolute elemental concentrations of a subterranean formation from neutron-induced gamma-ray spectroscopy are provided. In one example, a system for estimating an absolute yield of an element in a subterranean formation may include a downhole tool and data processing circuitry. The downhole tool may include a neutron source to emit neutrons into the formation, a neutron monitor to detect a count rate of the emitted neutrons, and a gamma-ray detector to obtain gamma-ray spectra deriving at least in part from inelastic gamma-rays produced by inelastic scattering events and neutron capture gamma-rays produced by neutron capture events. The data processing circuitry may be configured to determine a relative elemental yield from the gamma-ray spectra and to determine an absolute elemental yield based at least in part on a normalization of the relative elemental yield to the count rate of the emitted neutrons.
    Type: Application
    Filed: June 29, 2009
    Publication date: July 7, 2016
    Applicant: Schlumberger Technology Corporation
    Inventors: Jim A. Grau, Markus Berheide, Christian Stoller, Brad Roscoe, James Thornton
  • Patent number: 9335437
    Abstract: A method for evaluating wellbore conduit condition includes using measurements of at least one of (i) inelastic gamma rays made during emission a burst of neutrons into the conduit from within the conduit at at least one spaced apart location from a position of the emission and (ii) epithermal neutrons or capture gamma rays therefrom detected at at least two spaced apart locations from the position of the emission within a selected time after the emission. The at least one of the measurements of inelastic gamma rays and epithermal neutron or capture gamma ray counts are characterized to estimate an amount of loss of iron in the conduit.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: May 10, 2016
    Assignee: Schlumberger Technology Corporation
    Inventors: Sicco Beekman, Tong Zhou, David Alan Rose, Christian Stoller
  • Patent number: 9329302
    Abstract: A method is for detecting gamma rays using a gamma ray detector, and includes determining a first count of gamma rays having an energy in a first energy interval, using a controller coupled to the gamma ray detector. A second count of gamma rays having an energy in a second energy interval is determined, the second energy interval having a higher energy than the first energy interval, using the controller. A third count of gamma rays having an energy in a third energy interval is determined, the third energy interval having a higher energy than the second energy interval, using the controller. The second count of gamma rays is compensated for noise based upon a ratio of the second count and the third count, using the controller.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: May 3, 2016
    Assignee: Schlumberger Technology Corporation
    Inventor: Christian Stoller
  • Patent number: 9310515
    Abstract: A method for determining a petrophysical property of a formation includes detecting radiation events resulting from imparting neutrons into the formation at an energy level of at least 1 MeV. The petrophysical property is determined from an elastic scattering cross section of the formation. The elastic scattering cross-section related to a number of detected radiation events.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: April 12, 2016
    Assignee: Schlumberger Technology Corporation
    Inventors: Tong Zhou, Christian Stoller
  • Patent number: 9304214
    Abstract: A tool having a neutron source, a gamma ray detector, and a photomultiplier tube is provided. The gamma ray detector and the photomultiplier tube are at least partially surrounded by a layer of boron. The tool is used to make measurements, and the number of prompt gamma rays emitted by the boron is determined from the measurements. The number of neutrons detected may be inferred using the determined number of prompt gamma rays. The tool may also have a layer of neutron absorbing material different from boron or a layer of heavy metal at least partially surrounding the boron. The tool may be a logging tool used to delineate a porous formation and to determine its porosity. The tool may have a plurality of gamma ray detector/photomultiplier tube pairs and those pairs may be used to determine a formation hydrogen index and/or a borehole hydrogen index.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: April 5, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Tong Zhou, David Rose, Sicco Beekman, Christian Stoller
  • Patent number: 9268055
    Abstract: A well-logging device may include a housing to be positioned within a larger borehole of a subterranean formation and thereby define a stand-off distance with respect to the larger borehole. The well-logging device may also include at least one radiation source carried by the housing to direct radiation into the subterranean formation, and radiation detectors carried by the housing in azimuthally spaced relation to detect radiation from the subterranean formation. The well-logging device may further include a controller to cooperate with the radiation detectors to determine at least one property of the subterranean formation corrected for the stand-off distance.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: February 23, 2016
    Assignee: Schlumberger Technology Corporation
    Inventors: Avtandil Tkabladze, Michael L. Evans, Christian Stoller
  • Publication number: 20160032708
    Abstract: A downhole tool operable for conveyance within a wellbore extending into a subterranean formation, and for obtaining one or more measurements of the subterranean formation, wherein the downhole tool comprises a sensor, a pressure housing containing the sensor and mounted on an external surface of the downhole tool, and a sliding stabilizer covering the pressure housing.
    Type: Application
    Filed: April 8, 2014
    Publication date: February 4, 2016
    Applicant: Schlumberger Technology Corporation
    Inventors: Ahmed Amine Mahjoub, Sebastien Isambert, Emmanuel Fayeulle, Didier Fouillou, Michael L. Evans, Christian Stoller
  • Publication number: 20160003025
    Abstract: A method for evaluating wellbore conduit condition includes using measurements of at least one of (i) inelastic gamma rays made during emission a burst of neutrons into the conduit from within the conduit at at least one spaced apart location from a position of the emission and (ii) epithermal neutrons or capture gamma rays therefrom detected at at least two spaced apart locations from the position of the emission within a selected time after the emission. The at least one of the measurements of inelastic gamma rays and epithermal neutron or capture gamma ray counts are characterized to estimate an amount of loss of iron in the conduit.
    Type: Application
    Filed: July 7, 2014
    Publication date: January 7, 2016
    Inventors: Sicco Beekman, Tong Zhou, David Alan Rose, Christian Stoller
  • Patent number: 9217325
    Abstract: Methods and systems for determining whether a tool has been deployed below a drill pipe are provided. A downhole tool can measure various characteristics, which then can be analyzed to determine the likelihood of a tool having been deployed below the drill pipe. For example, density and porosity measurements can be affected by the presence of casing or drill pipe, and thus such measurements can provide an indication of whether the tool has been deployed below the drill pipe.
    Type: Grant
    Filed: August 18, 2013
    Date of Patent: December 22, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Laurent Villegas, Christopher S. Del Campo, Christian Stoller
  • Publication number: 20150285943
    Abstract: A method for improving precision of measurement of material composition of formations determined by gamma ray spectral an analysis includes determining an accurate value of an amount of a selected by analyzing a spectrum of gamma rays detected from the formations using a technique that directly relates the gamma ray spectrum to the amount of the material. A precise value of the amount of the material is determined by analyzing the spectrum of detected gamma rays that indirectly relates the gamma ray spectrum to the amount of the material. A function relating the accurate value to the precise value over a selected axial interval along the wellbore is determined. The function is applied to the accurate value at at least one selected axial position along the wellbore to determine an accurate and precise value of the amount of the material.
    Type: Application
    Filed: October 11, 2013
    Publication date: October 8, 2015
    Inventors: Christian Stoller, James A. Grau, Markus Berheide
  • Patent number: 9155185
    Abstract: Systems, methods, and devices with improved electrode configuration for downhole nuclear radiation generators are provided. For example, one embodiment of a nuclear radiation generator capable of downhole operation may include a charged particle source, a target material, and an acceleration column between the charged particle source and the target material. The acceleration column may include several electrodes shaped such that substantially no electrode material from the electrodes is sputtered onto an insulator surface of the acceleration column during normal downhole operation.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: October 6, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Jani Reijonen, Luke T. Perkins, Frederic Gicquiel, Christian Stoller, Peter Wraight
  • Publication number: 20150268376
    Abstract: A method for determining a petrophysical property of a formation includes detecting radiation events resulting from imparting neutrons into the formation at an energy level of at least 1 MeV. The petrophysical property is determined from an elastic scattering cross section of the formation. The elastic scattering cross-section related to a number of detected radiation events.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 24, 2015
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Tong Zhou, Christian Stoller
  • Publication number: 20150247948
    Abstract: A method for determining a formation thermal neutron decay rate from measurements of radiation resulting from at least one burst of high energy neutrons into formations surrounding a wellbore includes determining a first apparent neutron decay rate in a time window beginning at a first selected time after an end of the at least one burst, a second apparent decay rate from a time window beginning at a second selected time after the burst and a third apparent decay rate from a third selected time after the burst. The second time is later than the first time. A thermal neutron capture cross section of fluid in the wellbore is determined. A decay rate correction factor is determined based on the first and second apparent decay rates and a parameter indicative of the wellbore capture cross-section. The correction factor is applied to the third apparent decay rate to determine the formation thermal neutron decay rate.
    Type: Application
    Filed: September 5, 2013
    Publication date: September 3, 2015
    Inventors: Tong Zhou, Christian Stoller