Patents by Inventor Christian Walsdorff

Christian Walsdorff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200039901
    Abstract: The invention relates to a process for preparing butadiene from n-butenes in n reactors R1 to Rn operated in parallel, wherein the process in the production phase of a reactor Rm in the n reactors comprises the steps: A) provision of a feed gas stream a1m comprising n-butenes; B) feeding of the feed gas stream a1m comprising n-butenes, an oxygen-comprising gas stream a2m and a substream d2m of an oxygen-comprising total recycle gas stream d2 into the oxidative dehydrogenation zone of the reactor and oxidative dehydrogenation of n-butenes to butadiene, giving a product gas substream bm comprising butadiene; C) combination of the product gas substream bm with further product gas substreams to form a total product gas stream b and cooling and compression of the total product gas stream b and condensation of at least part of the high-boiling secondary components, giving at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene; D) feeding of the gas stream c2 into an absorption zone an
    Type: Application
    Filed: March 26, 2018
    Publication date: February 6, 2020
    Inventors: Jan UNGELENK, Oliver HAMMEN, Christian WALSDORFF, Rainer ECKRICH, Heinz BOELT, Christine TOEGEL, Ulrike WENNING, Hendrik REYNEKE, Anton WELLENHOFER
  • Publication number: 20190337870
    Abstract: Process for preparing butadiene from n-butenes, which has a start-up phase and an operating phase and the operating phase of the process comprises the steps: A) provision of a feed gas stream a1 comprising n-butenes; B) introduction of the feed gas stream a1 comprising n-butenes, an oxygen-comprising gas stream a2 and an oxygen-comprising recycle gas stream d2 into at least one oxidative dehydrogenation zone and oxidative dehydrogenation of n-butenes to butadiene, giving a product gas stream b comprising butadiene; C) cooling and compression of the product gas stream b, giving at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene; D) introduction of the gas stream c2 into an absorption zone and separation of incondensable and low-boiling gas constituents as gas stream d from the gas stream c2 by absorption of the C4 hydrocarbons in an absorption medium, giving an absorption medium stream loaded with C4 hydrocarbons and the gas stream d, and recirculation of the gas stream d as re
    Type: Application
    Filed: August 8, 2017
    Publication date: November 7, 2019
    Inventors: JAN UNGELENK, Oliver HAMMEN, Ulrich HAMMON, Rainer ECKRICH, Signe UNVERRICHT, Christian WALSDORFF, Heinz BOELT, Hendrik REYNEKE, Christine TOEGEL, Anton WELLENHOFER, Ulrike WENNING
  • Patent number: 10421700
    Abstract: The invention relates to a process for producing butadiene from n-butenes which comprises the steps of: A) providing a vaporous n-butenes-comprising input gas stream a1 by evaporating a liquid n-butenes-comprising stream a0; B) introducing the vaporous n-butenes-comprising input gas stream a1 and an at least oxygenous gas into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene to obtain a product gas stream b comprising butadiene, unconverted n-butenes, steam, oxygen, low-boiling hydrocarbons, high-boiling secondary components, possibly carbon oxides and possibly inert gases, Ca) chilling the product gas stream b by contacting with a cooling medium comprising an organic solvent in at least one chilling zone, the cooling medium being at least partially recycled into the chilling zone, Cb) compressing the chilled product gas stream b which is possibly depleted of high-boiling secondary components in at least one compression stage to obtain at least one aqueous c
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: September 24, 2019
    Assignee: BASF SE
    Inventors: Jan Pablo Josch, Ragavendra Prasad Balegedde Ramachandran, Christian Walsdorff, Regina Benfer, Anton Wellenhofer, Ulrike Wenning, Heinz Boelt, Hendrik Reyneke, Christine Toegel
  • Patent number: 10384990
    Abstract: The invention relates to a process for preparing 1,3-butadiene from n-butenes, comprising the steps of: A) providing an input gas stream a comprising butanes, 1-butene, 2-butene and isobutene, with or without 1,3-butadiene, from a fluid catalytic cracking plant; B) removing isobutene from the input gas stream a, giving a stream b comprising butanes, 1-butene and 2-butene, with or without 1,3-butadiene; C) feeding the stream b comprising butanes, 1-butene and 2-butene and optionally an, oxygenous gas and optionally water vapor into at least one dehydrogenating zone and dehydrogenating 1-butene and 2-butene to 1,3-butadiene, giving a product gas stream c comprising 1,3-butadiene, butanes, 2-butene and water vapor, with or without oxygen, with low-boiling hydrocarbons, with high-boiling secondary components, with or without carbon oxides and with or without inert gases; D) cooling and compressing the product gas stream c, giving at least one aqueous condensate stream d1 and a gas stream d2 comprising 1,3-buta
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: August 20, 2019
    Assignees: BASF SE, Linde AG
    Inventors: Jan Ungelenk, Philipp Grüne, Christian Walsdorff, Jan Pablo Josch, Michael Bender
  • Publication number: 20190224651
    Abstract: Multimetal oxide composition comprising Mo, Bi, Fe, Cu and one or more than one of the elements Co and Ni and use thereof.
    Type: Application
    Filed: January 17, 2019
    Publication date: July 25, 2019
    Applicant: BASF SE
    Inventors: Kazuhiko AMAKAWA, Christian WALSDORFF, Klaus Joachim MUELLER-ENGEL, Cornelia Katharina DOBNER, Ulrich HAMMON
  • Patent number: 10358399
    Abstract: A process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream comprising n-butenes; B) feeding the input gas stream comprising n-butenes and a gas containing at least oxygen into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream; Ca) cooling the product gas stream by contacting with a circulating cooling medium in at least one cooling zone; Cb) compressing the cooled product gas stream in at least one compression stage, giving at least one aqueous condensate stream c1 and one gas stream c2; D) removing uncondensable and low-boiling gas constituents comprising oxygen and low-boiling hydrocarbons as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons in an absorbent, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and then desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1; E) separating the C4
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: July 23, 2019
    Assignees: BASF SE, Linde AG
    Inventors: Philipp Grüne, Stephan Deublein, Christian Walsdorff, Jan Pablo Josch, Rainer Rahm, Hendrik Reyneke, Anton Wellenhofer, Ulrike Wenning, Christine Toegel, Heinz Boelt
  • Patent number: 10307741
    Abstract: The invention relates to shaped catalyst bodies for the oxidation of SO2 to SO3, which comprise vanadium, at least one alkali metal and sulfate on a silicon dioxide support material, wherein the shaped body has the shape of a cylinder having 3 or 4 hollow-cylindrical convexities, obtainable by extrusion of a catalyst precursor composition comprising vanadium, at least one alkali metal and sulfate on a silicon dioxide support material through the opening of an extrusion tool, wherein the opening of the extrusion tool has a cross section formed by 3 or 4 partly overlapping rings whose midpoints lie essentially on a circular line having a diameter of y, wherein the rings are bounded by an outer line lying on a circle having an external diameter x1 and an inner line lying on a circle having an internal diameter x2.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: June 4, 2019
    Assignee: BASF SE
    Inventors: Philipp Grüne, Christian Walsdorff, Markus Schubert, Holger Borchert, Jacob Cornelis Van Dorland, Jürgen Zühlke, Stefan Lipp, Michael Krämer
  • Publication number: 20180282246
    Abstract: The invention relates to a process for preparing 1,3-butadiene from n-butenes, comprising the steps of: A) providing an input gas stream a comprising butanes, 1-butene, 2-butene and isobutene, with or without 1,3-butadiene, from a fluid catalytic cracking plant; B) removing isobutene from the input gas stream a, giving a stream b comprising butanes, 1-butene and 2-butene, with or without 1,3-butadiene; C) feeding the stream b comprising butanes, 1-butene and 2-butene and optionally an, oxygenous gas and optionally water vapor into at least one dehydrogenating zone and dehydrogenating 1-butene and 2-butene to 1,3-butadiene, giving a product gas stream c comprising 1,3-butadiene, butanes, 2-butene and water vapor, with or without oxygen, with low-boiling hydrocarbons, with high-boiling secondary components, with or without carbon oxides and with or without inert gases; D) cooling and compressing the product gas stream c, giving at least one aqueous condensate stream d1 and a gas stream d2 comprising 1,3-buta
    Type: Application
    Filed: November 9, 2015
    Publication date: October 4, 2018
    Applicants: BASF SE, Linde AG
    Inventors: Jan UNGELENK, Philipp GRÜNE, Christian WALSDORFF, Jan Pablo JOSCH, Michael BENDER
  • Publication number: 20180147561
    Abstract: Process for producing a multimetal oxide catalyst comprising molybdenum, chromium and at least one further metal by mixing of a pulverulent multimetal oxide comprising molybdenum and at least one further metal but no chromium with pulverulent chromium(III) oxide and thermal treatment of the resulting pulverulent mixture in the presence of oxygen at a temperature in the range from 350° C. to 650° C.
    Type: Application
    Filed: May 4, 2016
    Publication date: May 31, 2018
    Inventors: Jan UNGELENK, Ulrich HAMMON, Kazuhiko AMAKAWA, Philipp GRÜNE, Christian WALSDORFF
  • Patent number: 9963408
    Abstract: A process for preparing butadiene from n-butenes, comprising the steps of: absorbing C4 hydrocarbons comprising butadiene and n-butenes, obtained from oxidative dehydrogenation of n-butenes, in an aromatic hydrocarbon solvent as an absorbent and removing uncondensable and low-boiling gas constituents comprising oxygen, low-boiling hydrocarbons, any carbon oxides, aromatic hydrocarbon solvent and any inert gases as gas stream d2, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and then desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1; and at least partly recycling the gas stream d2 as cycle gas stream a2 into the oxidative dehydrogenation zone, wherein the content of aromatic hydrocarbon solvent in the cycle gas stream a2 is limited to less than 1% by volume.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: May 8, 2018
    Assignee: BASF SE
    Inventors: Philipp Grüne, Oliver Hammen, Christine Schmitt, Ragavendra Prasad Balegedde Ramachandran, Jan Pablo Josch, Christian Walsdorff
  • Patent number: 9957208
    Abstract: The invention relates to a process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream a comprising n-butenes, B) feeding the input gas stream a comprising n-butenes and a gas containing at least oxygen into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream b comprising butadiene, unconverted n-butenes, water vapor, oxygen, low-boiling hydrocarbons and high-boiling secondary components, with or without carbon oxides and with or without inert gases; Ca) cooling the product gas stream b by contacting with a cooling medium in at least one cooling zone, the cooling medium being at least partly recycled and having an aqueous phase and an organic phase of an organic solvent, wherein the organic solvent is selected from the group consisting of toluene, o-, m- and p-xylene, mesitylene, mono-, di- and triethylbenzene, mono-, di- and triisopropylbenzene and mixtures thereof, and the mass ratio of
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: May 1, 2018
    Assignees: BASF SE, Linde AG
    Inventors: Philipp Grüne, Oliver Hammen, Rainer Eckrich, Jan Pablo Josch, Christian Walsdorff, Andre Biegner, Gregor Bloch, Heinz Boelt, Hendrik Reyneke, Christine Toegel, Ulrike Wenning
  • Publication number: 20180104674
    Abstract: The invention relates to shaped catalyst bodies for the oxidation of SO2 to SO3, which comprise vanadium, at least one alkali metal and sulfate on a silicon dioxide support material, wherein the shaped body has the shape of a cylinder having 3 or 4 hollow-cylindrical convexities, obtainable by extrusion of a catalyst precursor composition comprising vanadium, at least one alkali metal and sulfate on a silicon dioxide support material through the opening of an extrusion tool, wherein the opening of the extrusion tool has a cross section formed by 3 or 4 partly overlapping rings whose midpoints lie essentially on a circular line having a diameter of y, wherein the rings are bounded by an outer line lying on a circle having an external diameter x1 and an inner line lying on a circle having an internal diameter x2.
    Type: Application
    Filed: March 16, 2016
    Publication date: April 19, 2018
    Applicant: BASF SE
    Inventors: PHILIPP GRÜNE, Christian WALSDORFF, Markus SCHUBERT, Holger BORCHERT, Jacob Cornelis VAN DORLAND, Jürgen ZÜHLKE, Stefan LIPP, Michael KRÄMER
  • Publication number: 20180105479
    Abstract: The invention relates to a process for producing butadiene from n-butenes which comprises the steps of: A) providing a vaporous n-butenes-comprising input gas stream a1 by evaporating a liquid n-butenes-comprising stream a0; B) introducing the vaporous n-butenes-comprising input gas stream a1 and an at least oxygenous gas into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene to obtain a product gas stream b comprising butadiene, unconverted n-butenes, steam, oxygen, low-boiling hydrocarbons, high-boiling secondary components, possibly carbon oxides and possibly inert gases, Ca) chilling the product gas stream b by contacting with a cooling medium comprising an organic solvent in at least one chilling zone, the cooling medium being at least partially recycled into the chilling zone, Cb) compressing the chilled product gas stream b which is possibly depleted of high-boiling secondary components in at least one compression stage to obtain at least one aqueous c
    Type: Application
    Filed: March 23, 2016
    Publication date: April 19, 2018
    Inventors: Jan Pablo JOSCH, Ragavendra Prasad BALEGEDDE RAMACHANDRAN, Christian Walsdorff, Regina BENFER, Anton WELLENHOFER, Ulrike WENNING, Heinz BOELT, Hendrik REYNEKE, Christine TOEGEL
  • Patent number: 9925526
    Abstract: The invention relates to an oxidation catalyst comprising at least one inorganic, oxidic or ceramic, shaped support body having a BET surface area of less than 0.5 m2/g, based on the support, which is at least partly coated with a catalytically active multielement oxide, the catalyst being precious metal-free and the shaped support body having the form of a saddle whose saddle surface is curved oppositely in the two principal directions, to a process for producing it, to its use in various catalytic gas phase oxidations, and to corresponding processes for catalytic gas phase oxidation.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: March 27, 2018
    Assignee: BASF SE
    Inventors: Ulrich Hammon, Cathrin Alexandra Welker-Nieuwoudt, Josef Macht, Christian Walsdorff, Cornelia Katharina Dobner
  • Patent number: 9914716
    Abstract: The present invention relates to a catalyst system for oxidation of o-xylene and/or naphthalene to phthalic anhydride (PA), comprising a plurality of catalyst zones arranged in succession in the reaction tube, which has been produced using antimony trioxide consisting predominantly of the senarmontite modification of which all primary crystallites have a size of less than 200 nm. The present invention further relates to a process for gas phase oxidation, in which a gas stream comprising at least one hydrocarbon and molecular oxygen is passed through a catalyst system which comprises a plurality of catalyst zones arranged in succession in the reaction tube and which has been produced using an antimony trioxide consisting predominantly of the senarmontite modification with a median primary crystallite size of less than 200 nm.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: March 13, 2018
    Assignee: BASF SE
    Inventors: Diana C. Galeano Nunez, Christian Walsdorff, Jürgen Zühlke, Hans-Martin Allmann
  • Publication number: 20180008962
    Abstract: The present invention relates to a catalyst system for oxidation of o-xylene and/or naphthalene to phthalic anhydride (PA) comprising at least four catalyst zones arranged in succession in the reaction tube and filled with catalysts of different chemical composition wherein the active material of the catalysts comprise vanadium and titanium dioxide and the active material of the catalyst in the last catalyst zone towards the reactor outlet has an antimony content (calculated as antimony trioxide) between 0.7 to 3.0 wt. %.
    Type: Application
    Filed: January 14, 2016
    Publication date: January 11, 2018
    Inventors: DIANA CAROLINA GALEANO NUNEZ, Christian WALSDORFF, Jurgen ZQHLKE, Hans-Martin ALLMANN
  • Publication number: 20170334809
    Abstract: A process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream comprising n-butenes; B) feeding the input gas stream comprising n-butenes and a gas containing at least oxygen into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream; Ca) cooling the product gas stream by contacting with a circulating cooling medium in at least one cooling zone; Cb) compressing the cooled product gas stream in at least one compression stage, giving at least one aqueous condensate stream c1 and one gas stream c2; D) removing uncondensable and low-boiling gas constituents comprising oxygen and low-boiling hydrocarbons as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons in an absorbent, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and then desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1; E) separating the C4
    Type: Application
    Filed: November 2, 2015
    Publication date: November 23, 2017
    Inventors: Philipp GRUNE, Stephan DEUBLEIN, Christian WALSDORFF, Jan Pablo JOSCH, Rainer RAHM, Hendrik REYNEKE, Anton WELLENHOFER, Ulrike WENNING, Christine TOEGEL, Heinz BOELT
  • Publication number: 20170233313
    Abstract: The invention relates to a process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream a comprising n-butenes, B) feeding the input gas stream a comprising n-butenes and a gas containing at least oxygen into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream b comprising butadiene, unconverted n-butenes, water vapor, oxygen, low-boiling hydrocarbons and high-boiling secondary components, with or without carbon oxides and with or without inert gases; Ca) cooling the product gas stream b by contacting with a cooling medium in at least one cooling zone, the cooling medium being at least partly recycled and having an aqueous phase and an organic phase of an organic solvent, wherein the organic solvent is selected from the group consisting of toluene, o-, m- and p-xylene, mesitylene, mono-, di- and triethylbenzene, mono-, di- and triisopropylbenzene and mixtures thereof, and the mass ratio of
    Type: Application
    Filed: August 11, 2015
    Publication date: August 17, 2017
    Inventors: Philipp GRÜNE, Oliver HAMMEN, Rainer ECKRICH, Jan Pablo JOSCH, Christian WALSDORFF, Andre BIEGNER, Gergor BLOCH, Heinz BOELT, Hendrik REYNEKE, Christine TOEGEL, Ulrike WENNING
  • Patent number: 9700876
    Abstract: A hollow cylindrical shaped catalyst body for gas phase oxidation of an alkene to an ?,?-unsaturated aldehyde and/or an ?,?-unsaturated carboxylic acid comprises a compacted multimetal oxide having an external diameter ED, an internal diameter ID and a height H, wherein ED is in the range from 3.5 to 4.5 mm; the ratio q=ID/ED is in the range from 0.4 to 0.55; and the ratio p=H/ED is in the range from 0.5 to 1. The shaped catalyst body is mechanically stable and catalyzes the partial oxidation of an alkene to the products of value with high selectivity. It provides a sufficiently high catalyst mass density of the catalyst bed and good long-term stability with acceptable pressure drop.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: July 11, 2017
    Assignee: BASF SE
    Inventors: Josef Macht, Christian Walsdorff, Cornelia Katharina Dobner, Stefan Lipp, Cathrin Alexandra Welker-Nieuwoudt, Ulrich Hammon, Holger Borchert
  • Patent number: 9695099
    Abstract: The present invention relates to a process for preparing acrylic acid from acetic acid and formaldehyde, which comprises (a) provision of a stream S1 comprising acetic acid and formaldehyde, where the molar ratio of acetic acid to formaldehyde in the stream S1 is in the range from 0.5:1 to 2:1; (b) contacting of the stream S1 with an aldol condensation catalyst comprising vanadium, phosphorus and oxygen to give a stream S2 comprising acrylic acid, where, in (b), the space velocity WHSV is in the range from 0.35 to 7.0 kg/kg/h.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: July 4, 2017
    Assignee: BASF SE
    Inventors: Yong Liu, Martin Dieterle, Nicolai Tonio Woerz, Andrei-Nicolae Parvulescu, Michael Lejkowski, Johannes Lieberknecht, Christian Walsdorff, Kazuhiko Amakawa