Patents by Inventor Christian Weinmann

Christian Weinmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136730
    Abstract: The present disclosure provides methods, articles, and apparatuses related to altering electromagnetic radiation. A method of making articles includes a) forming an electromagnetic radiation altering material by providing a polymer matrix and optionally embedding dielectric particles in the polymer matrix and b) obtaining initial dielectric properties of the electromagnetic radiation altering material. The method further includes c) modeling electromagnetic radiation altering features of the material suitable for the article obtained from the material to have target electromagnetic radiation altering properties, thereby obtaining a simulation of the electromagnetic radiation altering article; and d) additive manufacturing the electromagnetic radiation altering article based on the simulation of the electromagnetic radiation altering article. An electromagnetic radiation altering article obtained by the method is also provided.
    Type: Application
    Filed: January 24, 2022
    Publication date: April 25, 2024
    Inventors: Jens Eichler, Christian Weinmann, Tom Gaide, Michael H. Stalder, Sebastian Eggert-Richter
  • Patent number: 11937043
    Abstract: A hearing protection device is provided. The hearing protection device includes a first earmuff connected to a second earmuff by a headband. Each of the first and second earmuffs are configured to dampen ambient sound. The hearing protection device also includes an antenna, located within a housing of the first earmuff. The antenna comprises a rigid portion coupled to a flexible portion. Both the rigid portion and the flexible portion are fixed within the housing. The flexible portion is configured to remain substantially in line with a ground plane with respect to the rigid portion.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: March 19, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Sebastian Eggert-Richter, Michael H. Stalder, Christian Weinmann, Benhard C. Schneider, Paul H. R. Jolly
  • Publication number: 20230384350
    Abstract: A voltage sensor for sensing an AC voltage of a HV/MV power conductor comprises a capacitive voltage divider for sensing the AC voltage having one or more high-voltage capacitors electrically connected in series with each other and a low-voltage portion comprising one or more low-voltage capacitors electrically connected with each other between the high-voltage portion and electrical ground. The voltage divider also comprises a signal contact, electrically arranged between the high-voltage portion and the low-voltage portion, for providing a signal voltage indicative of the AC voltage. The low-voltage portion further comprises a plurality of electrically actuated adjustable impedance elements configured to adjust the common overall impedance of the low-voltage portion towards a desired impedance.
    Type: Application
    Filed: May 22, 2023
    Publication date: November 30, 2023
    Inventors: Mark Gravermann, Gunther A. J. Stollwerck, Jens Weichold, Christine B. Bund, Mirco Gunjaca, Rainer Reeken, Martin A. Milek, Sebastian Eggert-Richter, Joerg Hahn, Michael H. Stalder, Christian Weinmann, Holger J. Kurzhals, Christopher R. Wilson
  • Publication number: 20220360884
    Abstract: A hearing protection device is provided. The hearing protection device includes a first earmuff connected to a second earmuff by a headband. Each of the first and second earmuffs are configured to dampen ambient sound. The hearing protection device also includes an antenna, located within a housing of the first earmuff. The antenna comprises a rigid portion coupled to a flexible portion. Both the rigid portion and the flexible portion are fixed within the housing. The flexible portion is configured to remain substantially in line with a ground plane with respect to the rigid portion.
    Type: Application
    Filed: June 23, 2020
    Publication date: November 10, 2022
    Inventors: Sebastian Eggert-Richter, Michael H. Stalder, Christian Weinmann, Benhard C. Schneider, Paul H.R. Jolly
  • Patent number: 11423279
    Abstract: Radio frequency identification (RFID) tags are described that include a substrate, an antenna disposed on a major surface of the substrate, an integrated circuit (IC) disposed on a major surface of the substrate, and one or more stand-alone capacitors disposed on a major surface of the substrate. The antenna may have a length less than about 2 meters between first and second ends of the antenna. The integrated circuit may have an effective capacitance less than about 1000 pF and the one or more stand-alone capacitors may have an equivalent capacitance greater than 500 pF and may be connected in parallel with the antenna and the IC.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: August 23, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ronald D. Jesme, Andrew P. Bonifas, Nicholas T. Gabriel, Christian Weinmann
  • Publication number: 20220136186
    Abstract: A radar radiation redirecting inhibition layer for reducing radar cross section (RCS) of radar radiation redirection pavement marking tapes, pavement marking cover tapes incorporating such layer and methods of use are described.
    Type: Application
    Filed: February 21, 2020
    Publication date: May 5, 2022
    Inventors: Markus G. Lierse, Marcel Doering, Christian Weinmann
  • Patent number: 11163054
    Abstract: Radar radiation redirecting tapes (1, 2) include a first plurality of individual radar-reflecting directional antennae (5, 11). Each directional antenna comprises at least three elongate, unevenly spaced antenna conductors (10, 20, 30), arranged with their long extensions parallel to each other in the plane of the tape, such that the directional antenna is operable to reflect incoming radar radiation predominantly in a direction (80) which is orthogonal to the long extension of the antenna conductors and parallel to the plane of the tape.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: November 2, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Christian Weinmann, Markus G. W. Lierse, Benjamin Muenstermann, Ronald D. Jesme, Volker Korsten
  • Publication number: 20210285843
    Abstract: A method for monitoring the surface of a device to physical and/or environmental exposure, the method comprising: • (a) attaching at least one sensor including a reactance autotuning integrated circuit to a surface of a device; • (b) attaching a reader in proximity to the sensor; • (c) measuring a reference reactance of the sensor with the reader at a selected frequency; • (d) continually monitoring for changes in the reactance of the sensor at the selected frequency, wherein changes to the reactance are digitized by the autotuning circuit; and • (e) comparing differences between the reference reactance and changes to the monitored reactance to determine if said surface of the device has been subjected to physical and/or environmental exposure.
    Type: Application
    Filed: September 12, 2017
    Publication date: September 16, 2021
    Inventors: Benjamin J. MUENSTERMANN, Christian WEINMANN, Bernd KUEHNEWEG, Andrea DEN DRIJVER, Ivan V. NESHATAEV, Walter TESCH, Zohaib HAMEED, Mohsen SALEHI
  • Patent number: 11119053
    Abstract: Wireless sensing devices including stable near-field antennas are provided. A spacer layer is attached to a portion of the substrate adjacent to the antenna. The spacer layer has a thickness T, a relative permittivity k, and a figure of merit defined as the ratio of T (in micrometers) by k. The spacer layer has the figure of merit no less than 20 (micrometers).
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: September 14, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Zohaib Hameed, Nicholas T. Gabriel, Ronald D. Jesme, Christian Weinmann, Kristin J. Godbey, Bret W. Ludwig, John P. Baetzold
  • Publication number: 20210148836
    Abstract: Wireless sensing devices including stable near-field antennas are provided. A spacer layer is attached to a portion of the substrate adjacent to the antenna. The spacer layer has a thickness T, a relative permittivity k, and a figure of merit defined as the ratio of T (in micrometers) by k. The spacer layer has the figure of merit no less than 20 (micrometers).
    Type: Application
    Filed: June 13, 2018
    Publication date: May 20, 2021
    Inventors: Zohaib Hameed, Nicholas T. Gabriel, Ronald D. Jesme, Christian Weinmann, Kristin J. Godbey, Bret W. Ludwig, John P. Baetzold
  • Patent number: 10411320
    Abstract: At least some aspects of the present disclosure feature a communication device for propagating an electromagnetic wave around a blocking structure. The communication device includes a passive coupling device to capture the electromagnetic wave, and a waveguide electromagnetically coupled to the coupling device. The waveguide is disposed around the blocking structure. The waveguide has a resonance frequency matched with the coupling device. The waveguide is configured to propagate the electromagnetic wave captured by the coupling device.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: September 10, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Christian Weinmann, Jaewon Kim, Justin M. Johnson, Dipankar Ghosh, Craig W. Lindsay
  • Patent number: 10345340
    Abstract: The invention relates to a voltage sensing device for a high and/or medium-voltage power-carrying conductor, the voltages sensing device comprising: • a carrier element (3) with a passageway for receiving the power-carrying conductor, • wherein the carrier element comprises an electrode (4) extending in an axial direction of the passageway of the carrier element and operable as a first electrode of the voltage sensing device, wherein • a conductor (1) of the power cable is operable as the second electrode of the voltage sensing device and wherein • the carrier element has a coefficient of thermal expansion that is less than 5×10^?6 1/K at 20 C.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: July 9, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Mark Gravermann, Friedrich A. Busemann, Bernd Schubert, Gerhard Lohmeier, Andreea Sabo, Rainer Reeken, Michael H. Stalder, Christian Weinmann, Sebastian Eggert, Dipankar Ghosh, Myungchan Kang, Christopher D. Sebesta
  • Publication number: 20190162839
    Abstract: Radar radiation redirecting tapes (1, 2) include a first plurality of individual radar-reflecting directional antennae (5, 11). Each directional antenna comprises at least three elongate, unevenly spaced antenna conductors (10, 20, 30), arranged with their long extensions parallel to each other in the plane of the tape, such that the directional antenna is operable to reflect incoming radar radiation predominantly in a direction (80) which is orthogonal to the long extension of the antenna conductors and parallel to the plane of the tape.
    Type: Application
    Filed: July 27, 2017
    Publication date: May 30, 2019
    Inventors: Christian Weinmann, Markus G.W. Lierse, Benjamin Muenstermann, Ronald D. Jesme, Volker Korsten
  • Patent number: 10215778
    Abstract: Voltage sensor (1) for a high- or medium-voltage power-carrying conductor for a power network, such as an inner conductor of a power cable or a cable connector or a bus bar. The voltage sensor has a tubular shape and an axial passageway (40), which can receive the conductor. The voltage sensing device comprises a) a radially-inner electrode (20), operable as a first sensing electrode of a sensing capacitor for sensing the voltage of the power-carrying conductor, b) a radially-outer electrode (30), operable as a second sensing electrode of the sensing capacitor, and c) a solid carrier element (10), at least a first portion of which is arranged between the inner electrode and the outer electrode, the first portion being operable as a dielectric of the sensing capacitor. The sensor can be accommodated in a cable accessory. The carrier element may comprise ceramic material to increase accuracy.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: February 26, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Mark Gravermann, Sebastian Eggert, Michael Petry, Werner Roehling, Friedrich A. Busemann, Bernd Schubert, Gerhard Lohmeier, Michael H. Stalder, Jens Weichold, Rainer Reeken, Andreea Sabo, Christian Weinmann, Dipankar Ghosh, Myungchan Kang, Christopher D. Sebesta
  • Publication number: 20180123253
    Abstract: At least some aspects of the present disclosure feature a communication device for propagating an electromagnetic wave around a blocking structure. The communication device includes a passive coupling device to capture the electromagnetic wave, and a waveguide electromagnetically coupled to the coupling device. The waveguide is disposed around the blocking structure. The waveguide has a resonance frequency matched with the coupling device. The waveguide is configured to propagate the electromagnetic wave captured by the coupling device.
    Type: Application
    Filed: April 11, 2016
    Publication date: May 3, 2018
    Inventors: Christian Weinmann, Jaewon Kim, Justin M. Johnson, Dipankar Ghosh, Craig W. Lindsay
  • Patent number: 9960530
    Abstract: A terminal connection device for connecting an end of a medium- or high-voltage power cable to a connection point comprises a) an interface cable having first and second end portions, comprising an inner conductor and a conductive or semiconductive layer; b) a first stress control tube comprising a stress control element, and an insulating layer arranged around the stress control element, wherein the first stress control tube is mounted on the first end portion of the interface cable; c) a first cable connector for connecting the interface cable to the power cable, the first cable connector being connected to the second end portion of the interface cable; and d) one or more tubular shrinkable sleeves, at least a portion of one of the tubular shrinkable sleeves extending over at least a portion of the first stress control tube wherein the portion of the tubular shrinkable sleeve extending over at least a portion of the first stress control tube is shrunk down around at least a portion of the first stress contr
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: May 1, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Giuliano Bolcato, Jens Weichold, Pasquale Zanoli, Mark Gravermann, Michael H. Stalder, Holger J. Kurzhals, Sebastian Eggert, Christian Weinmann
  • Publication number: 20180068214
    Abstract: Radio frequency identification (RFID) tags are described that include a substrate, an antenna disposed on a major surface of the substrate, an integrated circuit (IC) disposed on a major surface of the substrate, and one or more stand-alone capacitors disposed on a major surface of the substrate. The antenna may have a length less than about 2 meters between first and second ends of the antenna.
    Type: Application
    Filed: March 17, 2016
    Publication date: March 8, 2018
    Inventors: Ronald D. Jesme, Andrew P. Bonifas, Nicholas T. Gabriel, Christian Weinmann
  • Patent number: 9640904
    Abstract: Sensored cable (1) for distribution of electrical power in a power network, the sensored cable comprising an inner conductor and an insulating layer (10) arranged concentrically around at least an axial section of the inner conductor. The sensored cable further comprises a capacitive voltage sensor (100) for sensing a voltage of the inner conductor, characterized by the sensor including a printed circuit board element (60), which is placed over an electrically isolated piece (140) of conductive or semiconductive material, arranged on the insulating layer of the cable. The electrically isolated piece (140) of conductive or semiconductive material is operable to form an electrode of a sensing capacitor of the capacitive voltage sensor. The cable may comprise a (semi-) conductive layer (20). The electrically isolated piece (40) of conductive or semiconductive material may comprise a portion of the (semi-) conductive layer.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 2, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Christian Weinmann, Holger J. Kurzhals, Michael H. Stalder, Sebastian Eggert, Jens Weichold
  • Publication number: 20170030946
    Abstract: Voltage sensor (1) for a high- or medium-voltage power-carrying conductor for a power network, such as an inner conductor of a power cable or a cable connector or a bus bar. The voltage sensor has a tubular shape and an axial passageway (40), which can receive the conductor. The voltage sensing device comprises a) a radially-inner electrode (20), operable as a first sensing electrode of a sensing capacitor for sensing the voltage of the power-carrying conductor, b) a radially-outer electrode (30), operable as a second sensing electrode of the sensing capacitor, and c) a solid carrier element (10), at least a first portion of which is arranged between the inner electrode and the outer electrode, the first portion being operable as a dielectric of the sensing capacitor. The sensor can be accommodated in a cable accessory. The carrier element may comprise ceramic material to increase accuracy.
    Type: Application
    Filed: December 16, 2014
    Publication date: February 2, 2017
    Inventors: Mark Gravermann, Sebastian Eggert, Michael Petry, Werner Roehling, Friedrich A. Busemann, Bernd Schubert, Gerhard Lohmeier, Michael H. Stalder, Jens Weichold, Rainer Reeken, Andreea Sabo, Christian Weinmann, Dipankar Ghosh, Myungchan Kang, Christopher D. Sebesta
  • Patent number: 9544066
    Abstract: Passive fibre-optic enclosure comprising, a) one or more fibre-optic functional units of a telecommunication network, optically connectable, via an optical fibre, with a central network unit, for receiving telecommunication signals for one or more subscribers via the optical fibre from the central network unit, characterized in that the enclosure further comprises, on the inside of the enclosure, b) transceiving means, which is operable to generate first optical signals using electrical energy, which is operable to receive optical response signals from the central network unit, which is optically connectable to the optical fibre such that the first optical signals can be transmitted by the optical fibre to the central network unit, and such that optical response signals can be transmitted by the optical fibre from the central network unit to the transceiving means.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: January 10, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Johannes Fink, Christian Weinmann, Sebastian Eggert, Manfred Bauer