Patents by Inventor Christiana Yue

Christiana Yue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7704836
    Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: April 27, 2010
    Assignee: Siliconix incorporated
    Inventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
  • Publication number: 20100019316
    Abstract: A method of fabricating a trench MOSFET, the lower portion of the trench containing a buried source electrode which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 28, 2010
    Applicant: Siliconix incorporated
    Inventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
  • Patent number: 7557409
    Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: July 7, 2009
    Assignee: Siliconix Incorporated
    Inventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
  • Publication number: 20080182376
    Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.
    Type: Application
    Filed: March 31, 2008
    Publication date: July 31, 2008
    Applicant: Siliconix incorporated
    Inventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
  • Publication number: 20070187753
    Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.
    Type: Application
    Filed: January 26, 2007
    Publication date: August 16, 2007
    Applicant: Siliconix incorporated
    Inventors: Deva Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Lui, Kuo-In Chen, Sharon Shi
  • Patent number: 7183610
    Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: February 27, 2007
    Assignee: Siliconix incorporated
    Inventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
  • Patent number: 7012005
    Abstract: In accordance with the present invention, a trench MOSFET is formed by creating a trench in a semiconductor substrate. A portion of either a side wall of the trench or the bottom of the trench is implanted with an implant species. An insulating layer is then grown overlying the bottom and side wall of the trench. The implant species is selected such that the insulating layer grows more quickly on the bottom of the trench than on the side wall of the trench, resulting in a thicker insulating layer in the bottom of the trench than on the trench side walls.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: March 14, 2006
    Assignee: Siliconix Incorporated
    Inventors: Karl Lichtenberger, Frederick P. Giles, Christiana Yue, Kyle Terrill, Mohamed N. Darwish, Deva Pattanayak, Kam Hong Lui, Robert Q. Xu, Kuo-in Chen
  • Publication number: 20050242392
    Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.
    Type: Application
    Filed: April 30, 2004
    Publication date: November 3, 2005
    Applicant: Siliconix incorporated
    Inventors: Deva Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Lui, Kuo-In Chen, Sharon Shi
  • Patent number: 6903412
    Abstract: The gate oxide layer of a trench MIS device includes a graduated transition region, where the thickness of the gate oxide layer decreases gradually from a thick section adjacent the bottom of the trench to a thin section adjacent the sidewall of the trench. The PN junction between the body and drain regions intersects the trench in the transition region. This structure allows for a greater margin of error in the placement of the PN junction during the manufacture of the device, since the intersection between the PN junction can be located anywhere in the transition region. The MIS device also has improved breakdown characteristics.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: June 7, 2005
    Assignee: Siliconix incorporated
    Inventors: Mohamed N. Darwish, Christiana Yue, Frederick P. Giles, Kam Hong Lui, Kuo-In Chen, Kyle Terrill, Deva N. Pattanayak
  • Patent number: 6875657
    Abstract: A process for manufacturing a trench MIS device includes depositing a conformal nitride layer in the trench; etching the nitride layer to create an exposed area at the bottom of the trench; and heating the substrate and thereby growing an oxide layer in the exposed area. This process causes the mask layer to “lift off”, creating a “bird's beak” structure. This becomes a “transition region”, where the thickness of the oxide layer decreases gradually in a direction away from the exposed area. The method further includes diffusing a dopant into the substrate, the dopant forming a PN junction with a remaining portion of said substrate, and controlling the diffusion such that the PN junction intersects the trench in the transition region. Because the thickness of the oxide layer decreases gradually, the PN junction does not need to be located at a particular point, i.e., there is a margin of error. This improves the manufacturability of the device and enhances its breakdown characteristics.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: April 5, 2005
    Assignee: Siliconix incorporated
    Inventors: Christiana Yue, Mohamed N. Darwish, Frederick P. Giles, Kam Hong Lui, Kuo-In Chen, Kyle Terrill, Deva N. Pattanayak
  • Patent number: 6709930
    Abstract: A trench MOSFET is formed by creating a trench in a semiconductor substrate, then forming a barrier layer over a portion of the side wall of the trench. A thick insulating layer is deposited in the bottom of the trench. The barrier layer is selected such that the thick insulating layer deposits in the bottom of the trench at a faster rate than the thick insulating layer deposits on the barrier layer. Embodiments of the present invention avoid stress and reliability problems associated with thermal growth of insulating layers, and avoid problems with control of the shape and thickness of the thick insulating layer encountered when a thick insulating layer is deposited, then etched to the proper shape and thickness.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: March 23, 2004
    Assignee: Siliconix Incorporated
    Inventors: Ben Chan, Kam Hong Lui, Christiana Yue, Ronald Wong, David Chang, Frederick P. Giles, Kyle Terrill, Mohamed N. Darwish, Deva Pattanayak, Robert Q. Xu, Kuo-in Chen
  • Publication number: 20030235959
    Abstract: In accordance with the present invention, a trench MOSFET is formed by creating a trench in a semiconductor substrate. A portion of either a side wall of the trench or the bottom of the trench is implanted with an implant species. An insulating layer is then grown overlying the bottom and side wall of the trench. The implant species is selected such that the insulating layer grows more quickly on the bottom of the trench than on the side wall of the trench, resulting in a thicker insulating layer in the bottom of the trench than on the trench side walls.
    Type: Application
    Filed: June 25, 2002
    Publication date: December 25, 2003
    Applicant: Siliconix Incorporated
    Inventors: Karl Lichtenberger, Frederick P. Giles, Christiana Yue, Kyle Terrill, Mohamed N. Darwish, Deva Pattanayak, Kam Hong Lui, Robert Q. Xu, Kuo-in Chen
  • Publication number: 20030235958
    Abstract: A trench MOSFET is formed by creating a trench in a semiconductor substrate, then forming a barrier layer over a portion of the side wall of the trench. A thick insulating layer is deposited in the bottom of the trench. The barrier layer is selected such that the thick insulating layer deposits in the bottom of the trench at a faster rate than the thick insulating layer deposits on the barrier layer. Embodiments of the present invention avoid stress and reliability problems associated with thermal growth of insulating layers, and avoid problems with control of the shape and thickness of the thick insulating layer encountered when a thick insulating layer is deposited, then etched to the proper shape and thickness.
    Type: Application
    Filed: June 21, 2002
    Publication date: December 25, 2003
    Applicant: Siliconix Incorporated
    Inventors: Ben Chan, Kam Hong Lui, Christiana Yue, Ronald Wong, David Chang, Frederick P. Giles, Kyle Terrill, Mohamed N. Darwish, Deva Pattanayak, Robert Q. Xu, Kuo-in Chen
  • Publication number: 20030030104
    Abstract: The gate oxide layer of a trench MIS device includes a graduated transition region, where the thickness of the gate oxide layer decreases gradually from a thick section adjacent the bottom of the trench to a thin section adjacent the sidewall of the trench. The PN junction between the body and drain regions intersects the trench in the transition region. This structure allows for a greater margin of error in the placement of the PN junction during the manufacture of the device, since the intersection between the PN junction can be located anywhere in the transition region. The MIS device also has improved breakdown characteristics.
    Type: Application
    Filed: March 26, 2002
    Publication date: February 13, 2003
    Inventors: Mohamed N. Darwish, Christiana Yue, Frederick P. Giles, Kam Hong Lui, Kuo-In Chen, Kyle Terrill, Deva N. Pattanayak
  • Publication number: 20030032248
    Abstract: A process for manufacturing a trench MIS device includes depositing a conformal nitride layer in the trench; etching the nitride layer to create an exposed area at the bottom of the trench; and heating the substrate and thereby growing an oxide layer in the exposed area. This process causes the mask layer to “lift off”, creating a “bird's beak” structure. This becomes a “transition region”, where the thickness of the oxide layer decreases gradually in a direction away from the exposed area. The method further includes diffusing a dopant into the substrate, the dopant forming a PN junction with a remaining portion of said substrate, and controlling the diffusion such that the PN junction intersects the trench in the transition region. Because the thickness of the oxide layer decreases gradually, the PN junction does not need to be located at a particular point, i.e., there is a margin of error.
    Type: Application
    Filed: March 26, 2002
    Publication date: February 13, 2003
    Inventors: Christiana Yue, Mohamed N. Darwish, Frederick P. Giles, Kam Hong Lui, Kuo-In Chen, Kyle Terrill, Deva N. Pattanayak