Patents by Inventor Christina Inman

Christina Inman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11912990
    Abstract: Compositions, systems, and methods for the display of analytes such as biomolecules are described. Display of analytes is achieved by coupling of the analytes to displaying molecules that are configured to associate with surfaces or interfaces. Arrays of analytes may be formed from the described systems for utilization in assays and other methods.
    Type: Grant
    Filed: July 28, 2023
    Date of Patent: February 27, 2024
    Assignee: NAUTILUS SUBSIDIARY, INC.
    Inventors: Tural Aksel, Stephen Hendricks, Elvis Ikwa, Pierre Indermuhle, Sadie Ingle, Christina Inman, Parag Mallick, Torri Elise Rinker, Steven Tan
  • Publication number: 20230407294
    Abstract: Compositions, systems, and methods for the display of analytes such as biomolecules are described. Display of analytes is achieved by coupling of the analytes to displaying molecules that are configured to associate with surfaces or interfaces. Arrays of analytes may be formed from the described systems for utilization in assays and other methods.
    Type: Application
    Filed: July 28, 2023
    Publication date: December 21, 2023
    Inventors: Tural AKSEL, Stephen HENDRICKS, Elvis IKWA, Pierre INDERMUHLE, Sadie INGLE, Christina INMAN, Parag MALLICK, Torri Elise RINKER, Steven TAN
  • Patent number: 11760997
    Abstract: Compositions, systems, and methods for the display of analytes such as biomolecules are described. Display of analytes is achieved by coupling of the analytes to displaying molecules that are configured to associate with surfaces or interfaces. Arrays of analytes may be formed from the described systems for utilization in assays and other methods.
    Type: Grant
    Filed: October 28, 2022
    Date of Patent: September 19, 2023
    Assignee: Nautilus Subsidiary, Inc.
    Inventors: Tural Aksel, Stephen Hendricks, Elvis Ikwa, Pierre Indermuhle, Sadie Ingle, Christina Inman, Parag Mallick, Torri Elise Rinker, Steven Tan
  • Publication number: 20230175046
    Abstract: A method of forming a polymer matrix array includes applying an aqueous solution into wells of a well array. The aqueous solution includes polymer precursors. The method further includes applying an immiscible fluid over the well array to isolate the aqueous solution within the wells of the well array and polymerizing the polymer precursors isolated in the wells of the well array to form the polymer matrix array. An apparatus includes a sensor array, a well array corresponding to the sensor array, and an array of polymer matrices disposed in the well array.
    Type: Application
    Filed: February 1, 2023
    Publication date: June 8, 2023
    Inventors: David LIGHT, Wolfgang HINZ, Ronald CICERO, Christina INMAN, Paul KENNEY, Alexander MASTROIANNI, Roman ROZHKOV, Yufang WANG, Jeremy GRAY, Marc GLAZER, Dmitriy GREMYACHINSKIY
  • Publication number: 20230112919
    Abstract: Compositions, systems, and methods for the display of analytes such as biomolecules are described. Display of analytes is achieved by coupling of the analytes to displaying molecules that are configured to associate with surfaces or interfaces. Arrays of analytes may be formed from the described systems for utilization in assays and other methods.
    Type: Application
    Filed: October 28, 2022
    Publication date: April 13, 2023
    Inventors: Tural AKSEL, Stephen HENDRICKS, Elvis IKWA, Pierre INDERMUHLE, Sadie INGLE, Christina INMAN, Parag MALLICK, Torri Elise RINKER, Steven TAN
  • Patent number: 11578356
    Abstract: A method of forming a polymer matrix array includes treating a surface within a well of a well array with a surface compound including a surface reactive functional group and a radical-forming distal group; applying an aqueous solution including polymer precursors to the well of the well array; and activating the radical-forming distal group of the surface coupling compound with an initiator and atom transfer radical polymerization (ATRP) catalyst to initiate radical polymerization of the polymer precursors within the well of the well array to form the polymer matrix array.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: February 14, 2023
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: David Light, Wolfgang Hinz, Ronald Cicero, Christina Inman, Paul Kenney, Alexander Mastroianni, Roman Rozhkov, Yufang Wang, Jeremy Gray, Marc Glazer, Dmitriy Gremyachinskiy
  • Patent number: 11505796
    Abstract: Compositions, systems, and methods for the display of analytes such as biomolecules are described. Display of analytes is achieved by coupling of the analytes to displaying molecules that are configured to associate with surfaces or interfaces. Arrays of analytes may be formed from the described systems for utilization in assays and other methods.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: November 22, 2022
    Assignee: Nautilus Biotechnology, Inc.
    Inventors: Tural Aksel, Stephen Hendricks, Elvis Ikwa, Pierre Indermuhle, Sadie Ingle, Christina Inman, Parag Mallick, Torri Elise Rinker, Steven Tan
  • Publication number: 20220290130
    Abstract: Compositions, systems, and methods for the display of analytes such as biomolecules are described. Display of analytes is achieved by coupling of the analytes to displaying molecules that are configured to associate with surfaces or interfaces. Arrays of analytes may be formed from the described systems for utilization in assays and other methods.
    Type: Application
    Filed: March 10, 2022
    Publication date: September 15, 2022
    Inventors: Tural AKSEL, Stephen HENDRICKS, Elvis IKWA, Pierre INDERMUHLE, Sadie INGLE, Christina INMAN, Parag MALLICK, Torri Elise RINKER, Steven TAN
  • Publication number: 20220290218
    Abstract: Compositions, systems, and methods for the display of analytes such as biomolecules are described. Display of analytes is achieved by coupling of the analytes to displaying molecules that are configured to associate with surfaces or interfaces. Arrays of analytes may be formed from the described systems for utilization in assays and other methods.
    Type: Application
    Filed: March 14, 2022
    Publication date: September 15, 2022
    Inventors: Tural AKSEL, Stephen HENDRICKS, Pierre INDERMUHLE, Christina INMAN, Parag MALLICK, Hongji QIAN, Torri Elise RINKER, Steven TAN
  • Publication number: 20200354780
    Abstract: A method of forming a polymer matrix array includes applying an aqueous solution into wells of a well array. The aqueous solution includes polymer precursors. The method further includes applying an immiscible fluid over the well array to isolate the aqueous solution within the wells of the well array and polymerizing the polymer precursors isolated in the wells of the well array to form the polymer matrix array. An apparatus includes a sensor array, a well array corresponding to the sensor array, and an array of polymer matrices disposed in the well array.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 12, 2020
    Inventors: David LIGHT, Wolfgang HINZ, Ronald CICERO, Christina INMAN, Paul KENNEY, Alexander MASTROIANNI, Roman ROZHKOV, Yufang WANG, Jeremy GRAY, Marc GLAZER, Dmitriy GREMYACHINSKIY
  • Patent number: 10738353
    Abstract: A method of forming a polymer matrix array includes applying an aqueous solution into wells of a well array. The aqueous solution includes polymer precursors. The method further includes applying an immiscible fluid over the well array to isolate the aqueous solution within the wells of the well array and polymerizing the polymer precursors isolated in the wells of the well array to form the polymer matrix array. An apparatus includes a sensor array, a well array corresponding to the sensor array, and an array of polymer matrices disposed in the well array.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: August 11, 2020
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: David Light, Wolfgang Hinz, Ronald Cicero, Christina Inman, Paul Kenney, Alexander Mastroianni, Roman Rozhkov, Yufang Wang, Jeremy Gray, Marc Glazer, Dmitriy Gremyachinskiy
  • Publication number: 20190017107
    Abstract: A method of forming a polymer matrix array includes applying an aqueous solution into wells of a well array. The aqueous solution includes polymer precursors. The method further includes applying an immiscible fluid over the well array to isolate the aqueous solution within the wells of the well array and polymerizing the polymer precursors isolated in the wells of the well array to form the polymer matrix array. An apparatus includes a sensor array, a well array corresponding to the sensor array, and an array of polymer matrices disposed in the well array.
    Type: Application
    Filed: August 31, 2018
    Publication date: January 17, 2019
    Inventors: David LIGHT, Wolfgang HINZ, Ronald CICERO, Christina INMAN, Paul KENNEY, Alexander MASTROIANNI, Roman ROZHKOV, Yufang WANG, Jeremy GRAY, Marc GLAZER, Dmitriy GREMYACHINSKIY
  • Patent number: 9080968
    Abstract: A method of manufacturing a sensor, the method including forming an array of chemically-sensitive field effect transistors (chemFETs), depositing a dielectric layer over the chemFETs in the array, depositing a protective layer over the dielectric layer, etching the dielectric layer and the protective layer to form cavities corresponding to sensing surfaces of the chemFETs, and removing the protective layer. The method further includes, etching the dielectric layer and the protective layer together to form cavities corresponding to sensing surfaces of the chemFETs. The protective layer is at least one of a polymer, photoresist material, noble metal, copper oxide, and zinc oxide. The protective layer is removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric acid.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: July 14, 2015
    Assignee: Life Technologies Corporation
    Inventors: Christina Inman, Alexander Mastroianni, Wolfgang Hinz, Shifeng Li, Scott Benson
  • Publication number: 20140191292
    Abstract: A method of manufacturing a sensor, the method including forming an array of chemically-sensitive field effect transistors (chemFETs), depositing a dielectric layer over the chemFETs in the array, depositing a protective layer over the dielectric layer, etching the dielectric layer and the protective layer to form cavities corresponding to sensing surfaces of the chemFETs, and removing the protective layer. The method further includes, etching the dielectric layer and the protective layer together to form cavities corresponding to sensing surfaces of the chemFETs. The protective layer is at least one of a polymer, photoresist material, noble metal, copper oxide, and zinc oxide. The protective layer is removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric acid.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 10, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Christina INMAN, Alexander MASTROIANNI, Wolfgang HINZ, Shifeng LI, Scott BENSON
  • Patent number: 8536099
    Abstract: According to various embodiments, a method is provided that comprises washing an array of DNA-coated beads on a substrate, with a wash solution to remove stacked beads from the substrate. The wash solution can include inert solid beads in a carrier. The DNA-coated beads can have an average diameter and the solid beads in the wash solution can have an average diameter that is at least twice the diameter of the DNA-coated beads. The washing can form dislodged DNA-coated beads and a monolayer of DNA-coated beads. In some embodiments, first beads for forming an array are contacted with a poly(ethylene glycol) (PEG) solution comprising a PEG having a molecular weight of about 350 Da or less. In some embodiments, slides for forming bead arrays are provided as are systems for imaging the same.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: September 17, 2013
    Assignee: Life Technologies Corporation
    Inventors: Mark Oldham, George Fry, Christina Inman, John Bridgham, Timothy Hunkapillar, Charles Vann
  • Publication number: 20110206578
    Abstract: Methods for activating and/or reactivating a metal oxide surface for deposition, immobilizing, and/or growing a biological sample (e.g., an oligonucleotide, a polynucleotide, functionalized particle, a polymer, etc.) thereon are disclosed. The metal oxide surface (e.g., zirconium oxide) can be activated and/or reactivated by exposing the metal oxide surface to various activation and/or treatment protocols capable of enhancing a slide's activity relative to the activity of an untreated slide. The activation and/or treatment protocol can include subjecting the slide (or at least the metal oxide layer) to an oxygen plasma treatment and/or a peroxide solution for an amount of time sufficient to activate and/or reactivate the metal oxide surface. Activated sequencing slides capable of incorporation, for example, into various embodiments of a flow cell for use in NGS platforms are also disclosed herein.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 25, 2011
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Evan Foster, Jessica Reed, Heather Shepherd, Christina Inman, Scott Benson
  • Publication number: 20110136677
    Abstract: According to various embodiments, a method is provided that comprises washing an array of DNA-coated beads on a substrate, with a wash solution to remove stacked beads from the substrate. The wash solution can include inert solid beads in a carrier. The DNA-coated beads can have an average diameter and the solid beads in the wash solution can have an average diameter that is at least twice the diameter of the DNA-coated beads. The washing can form dislodged DNA-coated beads and a monolayer of DNA-coated beads. In some embodiments, first beads for forming an array are contacted with a poly(ethylene glycol) (PEG) solution comprising a PEG having a molecular weight of about 350 Da or less. In some embodiments, slides for forming bead arrays are provided as are systems for imaging the same.
    Type: Application
    Filed: August 31, 2010
    Publication date: June 9, 2011
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Mark OLDHAM, George Fry, Christina Inman, John Bridgham, Timothy Hunkapillar, Charles Vann