Patents by Inventor Christina Roark

Christina Roark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932867
    Abstract: Methods of preventing or treating rheumatoid arthritis (RA) in a subject by introducing the DRB1*04:01K71E mutation that is resistant to RA. The resistant allele is introduced into the subject having or at risk of developing RA, using a HLA CRISPR/Cas9 vector that targets codon 71 in the HLA allele DRB1*04:01, introducing a single A to G point mutation in codon 71 by homology directed repair to alter the lysine at position 71 of the expressed protein to glutamic acid. This modified allele is affected in the subject's hematopoietic stem cells, which are then expanded and transplanted back into the patient. This microgene therapy confers RA-resistance via an autologous transplant. The invention includes isolated nucleic acids, vectors, recombinant viruses, cells, and pharmaceutical compositions to modify the HLA DRB1*04:01 allele.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: March 19, 2024
    Assignees: National Jewish Health, The Regents of the University of Colorado, a Body Corporate
    Inventors: Brian Freed, Kirsten Anderson, Christina Roark, Jennifer Matsuda
  • Publication number: 20230295265
    Abstract: Methods of preventing or treating autoimmune disease are disclosed. In some cases, subjects with having or at risk of developing autoimmune disease are identified as possessing one or more autoimmunity-susceptibility HLA alleles at one or more HLA loci. In many cases, the HLA loci are selected from Class I and Class II loci, for example Class I A, B, and C, and Class II DQ, DR, and DP. In many cases, subjects suffering from or at risk of developing an autoimmune disease may be administered a plurality engineered autologous HSCs modified to carry and express a variant susceptibility allele having at least one mutation in the antigen binding cleft that alters antigen binding and/or specificity of that variant HLA molecule. In many embodiments, the engineered HSCs are CD34+ immune cells that express one or more modified HLA proteins.
    Type: Application
    Filed: January 19, 2023
    Publication date: September 21, 2023
    Inventors: Brian Freed, Christina Roark, Elizabeth Sunderhaus
  • Publication number: 20230192808
    Abstract: Methods of preventing or treating autoimmune disease are disclosed. In some cases, subjects with having or at risk of developing autoimmune disease are identified as possessing one or more autoimmunity-susceptibility HLA alleles at one or more HLA loci. In many cases, the HLA loci are selected from Class I and Class II loci, for example Class I A, B, and C, and Class II DQ, DR, and DP. In many cases, subjects suffering from or at risk of developing an autoimmune disease may be administered a plurality engineered autologous HSCs modified to carry and express a variant susceptibility allele having at least one mutation in the antigen binding cleft that alters antigen binding and/or specificity of that variant HLA molecule. In many embodiments, the engineered HSCs are CD34+ immune cells that express one or more modified HLA proteins.
    Type: Application
    Filed: May 10, 2022
    Publication date: June 22, 2023
    Inventors: Brian Freed, Christina Roark, Elizabeth Sunderhaus
  • Publication number: 20230159617
    Abstract: Methods of preventing or treating autoimmune disease are disclosed. In some cases, subjects with having or at risk of developing autoimmune disease are identified as possessing one or more autoimmunity-susceptibility HLA alleles at one or more HLA loci. In many cases, the HLA loci are selected from Class I and Class II loci, for example Class I A, B, and C, and Class II DQ, DR, and DP. In many cases, subjects suffering from or at risk of developing an autoimmune disease may be administered a plurality engineered autologous HSCs modified to carry and express a variant susceptibility allele having at least one mutation in the antigen binding cleft that alters antigen binding and/or specificity of that variant HLA molecule. In many embodiments, the engineered HSCs are CD34+ immune cells that express one or more modified HLA proteins.
    Type: Application
    Filed: July 11, 2022
    Publication date: May 25, 2023
    Inventors: Brian Freed, Christina Roark, Elizabeth Sunderhaus
  • Publication number: 20230126183
    Abstract: Methods of preventing or treating autoimmune disease are disclosed. In some cases, subjects with having or at risk of developing autoimmune disease are identified as possessing one or more autoimmunity-susceptibility HLA alleles at one or more HLA loci. In many cases, the HLA loci are selected from Class I and Class II loci, for example Class I A, B, and C, and Class II DQ, DR, and DP. In many cases, subjects suffering from or at risk of developing an autoimmune disease may be administered a plurality engineered autologous HSCs modified to carry and express a variant susceptibility allele having at least one mutation in the antigen binding cleft that alters antigen binding and/or specificity of that variant HLA molecule. In many embodiments, the engineered HSCs are CD34+ immune cells that express one or more modified HLA proteins.
    Type: Application
    Filed: July 11, 2022
    Publication date: April 27, 2023
    Inventors: Brian Freed, Christina Roark, Elizabeth Sunderhaus
  • Publication number: 20230123094
    Abstract: Methods of preventing or treating autoimmune disease are disclosed. In some cases, subjects with having or at risk of developing autoimmune disease are identified as possessing one or more autoimmunity-susceptibility HLA alleles at one or more HLA loci. In many cases, the HLA loci are selected from Class I and Class II loci, for example Class I A, B, and C, and Class II DQ, DR, and DP. In many cases, subjects suffering from or at risk of developing an autoimmune disease may be administered a plurality engineered autologous HSCs modified to carry and express a variant susceptibility allele having at least one mutation in the antigen binding cleft that alters antigen binding and/or specificity of that variant HLA molecule. In many embodiments, the engineered HSCs are CD34+ immune cells that express one or more modified HLA proteins.
    Type: Application
    Filed: July 11, 2022
    Publication date: April 20, 2023
    Inventors: Brian Freed, Christina Roark, Elizabeth Sunderhaus
  • Publication number: 20230091257
    Abstract: Methods of preventing or treating autoimmune disease are disclosed. In some cases, subjects with having or at risk of developing autoimmune disease are identified as possessing one or more autoimmunity-susceptibility HLA alleles at one or more HLA loci. In many cases, the HLA loci are selected from Class I and Class II loci, for example Class I A, B, and C, and Class II DQ, DR, and DP. In many cases, subjects suffering from or at risk of developing an autoimmune disease may be administered a plurality engineered autologous HSCs modified to carry and express a variant susceptibility allele having at least one mutation in the antigen binding cleft that alters antigen binding and/or specificity of that variant HLA molecule. In many embodiments, the engineered HSCs are CD34+ immune cells that express one or more modified HLA proteins.
    Type: Application
    Filed: May 13, 2022
    Publication date: March 23, 2023
    Inventors: Brian Freed, Christina Roark, Elizabeth Sunderhaus
  • Publication number: 20200199616
    Abstract: Methods of preventing or treating rheumatoid arthritis (RA) in a subject by introducing the DRB1*04:01K71E mutation that is resistant to RA. The resistant allele is introduced into the subject having or at risk of developing RA, using a HLA CRISPR/Cas9 vector that targets codon 71 in the HLA allele DRB1*04:01, introducing a single A to G point mutation in codon 71 by homology directed repair to alter the lysine at position 71 of the expressed protein to glutamic acid. This modified allele is affected in the subject's hematopoietic stem cells, which are then expanded and transplanted back into the patient. This microgene therapy confers RA-resistance via an autologous transplant. The invention includes isolated nucleic acids, vectors, recombinant viruses, cells, and pharmaceutical compositions to modify the HLA DRB1*04:01 allele.
    Type: Application
    Filed: April 25, 2018
    Publication date: June 25, 2020
    Inventors: Brian Freed, Kirsten Anderson, Christina Roark, Jennifer Matsuda
  • Publication number: 20080248025
    Abstract: This invention generally relates to methods to treat conditions and diseases associated with interleukin-17 (IL-17) production. The invention also relates to methods of inhibiting ?? T cells, and particularly, a subset of ?? T cells that produce IL-17.
    Type: Application
    Filed: March 21, 2008
    Publication date: October 9, 2008
    Applicant: NATIONAL JEWISH MEDICAL AND RESEARCH CENTER
    Inventors: Christina Roark, Rebecca L. O'Brien, Willi K. Born
  • Publication number: 20070269426
    Abstract: Disclosed is a method of using soluble ?? T cell receptors to regulate a ?? T cell-mediated immune response in a mammal.
    Type: Application
    Filed: April 3, 2007
    Publication date: November 22, 2007
    Applicant: NATIONAL JEWISH MEDICAL AND RESEARCH CENTER
    Inventors: Rebecca O'Brien, Willi Born, Christina Roark, M. Aydintug