Patents by Inventor Christine E. Kliewer

Christine E. Kliewer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8969639
    Abstract: In a dehydrogenation process a hydrocarbon stream comprising at least one non-aromatic six-membered ring compound and at least one five-membered ring compound is contacted with a dehydrogenation catalyst produced by a method comprising treating the support with a liquid composition comprising the dehydrogenation component or a precursor thereof and at least one organic dispersant selected from an amino alcohol and an amino acid. The contacting is conducted under conditions effective to convert at least a portion of the at least one non-aromatic six-membered ring compound in the hydrocarbon stream to benzene and to convert at least a portion of the at least one five-membered ring compound in the hydrocarbon stream to paraffins.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: March 3, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stuart L. Soled, Edward A. Lemon, Jr., Christine E. Kliewer, Tan-Jen Chen, Joseph E. Baumgartner, Sabato Miseo
  • Publication number: 20140330058
    Abstract: A process is described for producing a catalyst composition comprising an iridium component dispersed on a support. In the process, silica-containing support is treated with an iridium compound and an organic compound comprising an amino group to form an organic iridium complex on the support. The treated support is then heated in an oxidizing atmosphere at a temperature of about 325° C. to about 475° C. to partially decompose the organic metal complex on the support. The treated support is then heated in a reducing atmosphere at a temperature of about 350° C. to about 500° C. to convert the partially decomposed organic iridium complex into the desired iridium component.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Christine E. Kliewer, Jane C. Cheng
  • Patent number: 8852326
    Abstract: This invention relates to aggregates of small particles of synthetic faujasite zeolite. Small primary particles of zeolite are clustered into larger secondary particles. The observable average width of the primary particles may be 0.3 micron or less and the observable average width of the secondary particles may be 0.8 micron or more. The silica to alumina ratio of the zeolite may be less than 4:1.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: October 7, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kun Wang, Robert C. Lemon, John S. Buchanan, Christine E. Kliewer, Wieslaw J. Roth
  • Patent number: 8536085
    Abstract: A method is provided for preparing a supported cobalt-containing catalyst having substantially homogeneously dispersed, small cobalt crystallites. The method comprises depositing cobalt nitrate on a support and then subjecting the support to a two-step decomposition protocol. In the first step, the support is heated in an oxygen-containing, substantially water-free atmosphere to about 160° C. to form an intermediate decomposition product. This intermediate product is then or hydrolyzed and reduced, or hydrolyzed, calcined and reduced.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: September 17, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Joseph E. Baumgartner, Christine E. Kliewer, El-Mekki El-Malki, Patricia A. Bielenberg
  • Publication number: 20120271077
    Abstract: In a dehydrogenation process a hydrocarbon stream comprising at least one non-aromatic six-membered ring compound and at least one five-membered ring compound is contacted with a dehydrogenation catalyst produced by a method comprising treating the support with a liquid composition comprising the dehydrogenation component or a precursor thereof and at least one organic dispersant selected from an amino alcohol and an amino acid. The contacting is conducted under conditions effective to convert at least a portion of the at least one non-aromatic six-membered ring compound in the hydrocarbon stream to benzene and to convert at least a portion of the at least one five-membered ring compound in the hydrocarbon stream to paraffins.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 25, 2012
    Applicant: Exxonmobile Chemical Patents Inc.
    Inventors: Teng Xu, Stuart L. Soled, Edward A. Lemon, JR., Christine E. Kliewer, Tan-Jen Chen, Joseph E. Baumgartner, Sabato Miseo
  • Publication number: 20120271076
    Abstract: A process is described for producing a catalyst composition comprising an iridium component dispersed on a support. In the process, silica-containing support is treated with an iridium compound and an organic compound comprising an amino group to form an organic iridium complex on the support. The treated support is then heated in an oxidizing atmosphere at a temperature of about 325° C. to about 475° C. to partially decompose the organic metal complex on the support. The treated support is then heated in a reducing atmosphere at a temperature of about 350° C. to about 500° C. to convert the partially decomposed organic iridium complex into the desired iridium component.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 25, 2012
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Christine E. Kliewer, Jane C. Cheng
  • Publication number: 20120227584
    Abstract: This invention relates to aggregates of small particles of synthetic faujasite zeolite. Small primary particles of zeolite are clustered into larger secondary particles. The observable average width of the primary particles may be 0.3 micron or less and the observable average width of the secondary particles may be 0.8 micron or more. The silica to alumina ratio of the zeolite may be less than 4:1.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 13, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kun Wang, Robert C. Lemon, John S. Buchanan, Christine E. Kliewer, Wieslaw J. Roth
  • Publication number: 20120083410
    Abstract: A method is provided for preparing a supported cobalt-containing catalyst having substantially homogeneously dispersed, small cobalt crystallites. The method comprises depositing cobalt nitrate on a support and then subjecting the support to a two-step decomposition protocol. In the first step, the support is heated in an oxygen-containing, substantially water-free atmosphere to about 160° C. to form an intermediate decomposition product. This intermediate product is then or hydrolyzed and reduced, or hydrolyzed, calcined and reduced.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 5, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: STUART L. SOLED, JOSEPH E. BAUMGARTNER, CHRISTINE E. KLIEWER, EL-MEKKI EL-MALKI, PATRICIA A. BIELENBERG
  • Patent number: 8148292
    Abstract: A method is provided for preparing a supported cobalt-containing catalyst having substantially homogenously dispersed, small cobalt crystallites. The method comprises depositing cobalt nitrate on a support and then heating the support in an oxygen-containing, substantially water-free atmosphere to about 160° C. to form an intermediate decomposition product. This intermediate decomposition product is then calcined and reduced.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: April 3, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Joseph E. Baumgartner, Christine E. Kliewer, El-Mekki El-Malki, Patricia A. Bielenberg
  • Patent number: 8143438
    Abstract: The present invention is directed to a process for hydrogenating one or more organic compounds especially unsaturated organic compounds by bringing the compound into contact with a hydrogen-containing gas in the presence of a catalyst, which comprises one or more catalytically active metals applied to a porous catalyst support. The one or more catalytically active metals having been derived via a decomposed organic complex of the metal on the support, in particular amine complexes of the metal. The decomposed complex may be treated with hydrogen to activate the catalyst before use as a hydrogenation catalyst.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: March 27, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stuart Leon Soled, Andrzej Malek, James Clarke Vartuli, Jennifer Schaefer Feeley, Sabato Miseo, Shifang Luo, Richard Henry Schlosberg, Joseph Ernest Baumgartner, Christine E. Kliewer, Steven T. Ragomo
  • Publication number: 20110082311
    Abstract: The present invention is directed to a process for hydrogenating one or more organic compounds especially unsaturated organic compounds by bringing the compound into contact with a hydrogen-containing gas in the presence of a catalyst, which comprises one or more catalytically active metals applied to a porous catalyst support. The one or more catalytically active metals having been derived via a decomposed organic complex of the metal on the support, in particular amine complexes of the metal. The decomposed complex may be treated with hydrogen to activate the catalyst before use as a hydrogenation catalyst.
    Type: Application
    Filed: December 14, 2010
    Publication date: April 7, 2011
    Inventors: Stuart Leon Soled, Andrzej Malek, James Clarke Vartuli, Jennifer Schaefer Feeley, Sabato Miseo, Shifang Luo, Richard Henry Schlosberg, Joseph Ernest Baumgartner, Christine E. Kliewer, Steven T. Ragomo
  • Patent number: 7875742
    Abstract: The present invention is directed to a process for hydrogenating one or more organic compounds especially unsaturated organic compounds by bringing the compound into contact with a hydrogen-containing gas in the presence of a catalyst, which comprises one or more catalytically active metals applied to a porous catalyst support. The one or more catalytically active metals having been derived via a decomposed organic complex of the metal on the support, in particular amine complexes of the metal. The decomposed complex may be treated with hydrogen to activate the catalyst before use as a hydrogenation catalyst.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: January 25, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stuart Leon Soled, Andrzej Malek, James Clarke Vartuli, Jennifer Schaefer Feeley, Sabato Miseo, Shifang Luo, Richard Henry Schlosberg, Joseph Ernest Baumgartner, Christine E. Kliewer, Steven T. Ragomo
  • Publication number: 20100184895
    Abstract: The present invention is directed to a process for hydrogenating one or more organic compounds especially unsaturated organic compounds by bringing the compound into contact with a hydrogen-containing gas in the presence of a catalyst, which comprises one or more catalytically active metals applied to a porous catalyst support. The one or more catalytically active metals having been derived via a decomposed organic complex of the metal on the support, in particular amine complexes of the metal. The decomposed complex may be treated with hydrogen to activate the catalyst before use as a hydrogenation catalyst.
    Type: Application
    Filed: February 25, 2010
    Publication date: July 22, 2010
    Inventors: Stuart Leon Soled, Andrzej Malek, James Clarke Vartuli, Jennifer Schaefer Feeley, Sabato Miseo, Shifang Luo, Richard Henry Schlosberg, Joseph Ernest Baumgartner, Christine E. Kliewer, Steven T. Ragomo
  • Patent number: 7732634
    Abstract: The present invention is directed to a process for hydrogenating one or more organic compounds especially unsaturated organic compounds by bringing the compound into contact with a hydrogen-containing gas in the presence of a catalyst, which comprises one or more catalytically active metals applied to a porous catalyst support. The one or more catalytically active metals having been derived via a decomposed organic complex of the metal on the support, in particular amine complexes of the metal. The decomposed complex may be treated with hydrogen to activate the catalyst before use as a hydrogenation catalyst.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: June 8, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stuart Leon Soled, Andrzej Malek, James Clarke Vartuli, Jennifer Schaefer Feeley, Sabato Miseo, Shifang Luo, Richard Henry Schlosberg, Joseph Ernest Baumgartner, Christine E. Kliewer, Steven T. Ragomo
  • Publication number: 20100022670
    Abstract: A method is provided for preparing a supported cobalt-containing catalyst having substantially homogenously dispersed, small cobalt crystallites. The method comprises depositing cobalt nitrate on a support and then heating the support in an oxygen-containing, substantially water-free atmosphere to about 160° C. to form an intermediate decomposition product. This intermediate decomposition product is then calcined and reduced.
    Type: Application
    Filed: July 23, 2009
    Publication date: January 28, 2010
    Inventors: Stuart L. Soled, Joseph E. Baumgartner, Christine E. Kliewer, El-Mekki El-Malki, Patricia A. Bielenberg
  • Publication number: 20100022388
    Abstract: A method is provided for preparing a supported cobalt-containing catalyst having substantially homogeneously dispersed, small cobalt crystallites. The method comprises depositing cobalt nitrate on a support and then subjecting the support to a two-step decomposition protocol. In the first step, the support is heated in an oxygen-containing, substantially water-free atmosphere to about 160° C. to form an intermediate decomposition product. This intermediate product is then or hydrolyzed and reduced, or hydrolyzed, calcined and reduced.
    Type: Application
    Filed: July 23, 2009
    Publication date: January 28, 2010
    Inventors: Stuart L. Soled, Joseph E. Baumgartner, Christine E. Kliewer, El-Mekki El El-Malki, Patricia A. Bielenberg
  • Patent number: 7605107
    Abstract: This invention relates to supported multi-metallic catalysts for use in the hydroprocessing of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor comprised of at least one Group VIII metal and a Group VI metal and an organic agent selected from the group consisting of amino alcohols and amino acids. The catalyst precursor is thermally treated to partially decompose the organic agent, then sulfided.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: October 20, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Christine E. Kliewer, Andrzej Malek, Andrew C. Moreland
  • Patent number: 7585808
    Abstract: The present invention is directed to processes for preparing supported metal catalysts comprising one or more catalytically active metals applied to a porous catalyst support and to processes that use such catalysts. The process requires the formation of an organic complex during the manufacture of the catalyst which after its formation is either partially or fully decomposed before reduction if the metal to form the catalyst. The catalysts have high levels of metal dispersion and uniform distribution of catalytically active metals on the support. The catalysts obtained form the processes are particularly effective in catalysing Fischer-Tropsch reactions and as adsorbants for the removal or organosulfur compounds from hydrocarbons.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: September 8, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Andrzel Malek, James Clarke Vartuli, Stuart Leon Soled, Sabato Miseo, Jennifer Schaefer Feeley, Gary L. Casty, Gabor Kiss, Jeffrey M. Dysard, Joseph Ernest Baumgartner, Christine E. Kliewer, Steven T Ragomo
  • Patent number: 7538066
    Abstract: This invention relates to supported multi-metallic catalysts for use in the hydroprocessing of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor comprised of at least one Group VIII metal and a Group VI metal and an organic agent selected from the group consisting of amino alcohols and amino acids.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: May 26, 2009
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Christine E. Kliewer, Jeffrey T. Elks