Patents by Inventor Christine Krohn

Christine Krohn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160047924
    Abstract: A method, including: obtaining an initial model of a subsurface property; simulating synthetic data from the initial model; obtaining recorded borehole seismic data, wherein the recorded borehole seismic data was obtained with a seismic source or receiver located in a well; and inverting, with a computer, the recorded borehole seismic data by full wavefield inversion, wherein the full wavefield inversion includes comparing the synthetic data to the recorded borehole seismic data, and computing a cost function, obtaining a gradient function from the cost function, wherein the gradient function is related to a change in the objective function with an incremental change in model parameters, using the initial model to compute an illumination function or a resolution function for seismic sources and receivers, and obtaining a conditioned gradient function by conditioning the gradient function with the illumination function or the resolution function.
    Type: Application
    Filed: July 15, 2015
    Publication date: February 18, 2016
    Inventors: Christine Krohn, Partha S. Routh, John E. Anderson, Gboyega Ayeni, Kenneth E. Green
  • Patent number: 8248886
    Abstract: The invention discloses a way to recover separated seismograms with reduced interference noise by processing vibroseis data recorded (or computer simulated) with multiple vibrators shaking simultaneously or nearly simultaneously (200). A preliminary estimate of the separated seismograms is used to obtain improved seismograms (201). The preliminary estimate is convolved with the vibrator signature and then used to update the seismogram. Primary criteria for performing the update include fitting the field data and satisfying typical criteria of noise-free seismograms (202). Alternative ways to update are disclosed, including signal extraction, modeled noise extraction, constrained optimization based separation, and penalized least-squares based separation. The method is particularly suited for removing noise caused by separating the combined record into separate records for each vibrator, and is advantageous where the number of sweeps is fewer than the number of vibrators (200).
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: August 21, 2012
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ramesh Neelamani, Christine Krohn, Jerry Krebs, Max Deffenbaugh, John Anderson
  • Publication number: 20100097888
    Abstract: The invention discloses a way to recover separated seismograms with reduced interference noise by processing vibroseis data recorded (or computer simulated) with multiple vibrators shaking simultaneously or nearly simultaneously (200). A preliminary estimate of the separated seismograms is used to obtain improved seismograms (201). The preliminary estimate is convolved with the vibrator signature and then used to update the seismogram. Primary criteria for performing the update include fitting the field data and satisfying typical criteria of noise-free seismograms (202). Alternative ways to update are disclosed, including signal extraction, modeled noise extraction, constrained optimization based separation, and penalized least-squares based separation. The method is particularly suited for removing noise caused by separating the combined record into separate records for each vibrator, and is advantageous where the number of sweeps is fewer than the number of vibrators (200).
    Type: Application
    Filed: March 19, 2008
    Publication date: April 22, 2010
    Applicant: EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: Ramesh Neelamani, Christine Krohn
  • Publication number: 20060250891
    Abstract: The present invention is a method of processing seismic data in which one or more seismic vibrators are activated with one or more pilot signals and vibrator motions are recorded along with seismic data. Vibrator signatures are computed from measured vibrator motions, such as the ground force signal. A desired impulse response is specified from either a measured vibrator motion or from test data or field data from a location near the location from which the seismic data was acquired. A deconvolution filter is computed from the impulse response and the vibrator signature. Alternatively, a single separation and deconvolution filter is derived from the impulse response and from vibrator signatures from multiple vibrators and sweeps. The deconvolution or deconvolution and separation filter is used to process the seismic data. The vibrators are then moved to a new location, and the activation is repeated.
    Type: Application
    Filed: February 13, 2004
    Publication date: November 9, 2006
    Inventor: Christine Krohn
  • Publication number: 20060164916
    Abstract: A method for simultaneously operating multiple seismic vibrators using continuous sweeps (little or no “listening” time between sweeps) for each vibrator, and recovering the separated seismic responses for each vibrator with the earth signature removed. Each vibrator is given a unique, continuous pilot signal. The earth response to the motion of each vibrator is measured or estimated. The vibrator motion records for each vibrator and the combined seismic data record for all the vibrators are parsed into separate shorter records. The shorter records are then used to form a system of simultaneous linear equations in the Fourier transform domain, following the HFVS method of Sallas and Allen. The equations are then solved for the separated earth responses.
    Type: Application
    Filed: June 3, 2004
    Publication date: July 27, 2006
    Inventors: Christine Krohn, Marvin Johnson