Patents by Inventor Christine N. Elia

Christine N. Elia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7498474
    Abstract: A process for the production of high octane number gasoline from light refinery olefins and benzene-containing aromatic streams such as reformate. The process achieves good utilization of both the ethylene and the propylene present in the mixed olefin feed from the unsaturated gas plant while reducing gasoline benzene levels. The light olefins including ethylene and propylene are reacted with the light aromatic stream containing benzene and other single ring aromatic compounds to form a gasoline boiling range product containing akylaromatics. The reaction is carried out with a two-catalyst system which comprises a member of the MWW family of zeolites and an intermediate pore size zeolite such as ZSM-5 using a fixed catalyst bed in both stages. Use of the two catalyst system enables the conversion of the ethylene and propylene components of the olefin feed to be converted to alkylaromatics under favorable conditions.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: March 3, 2009
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Benjamin S. Umansky, Michael C. Clark, Ajit B. Dandekar, Christine N. Elia
  • Publication number: 20080319242
    Abstract: The present invention provides an improved process for conversion of feedstock comprising an alkylatable aromatic compound and an alkylating agent to desired alkylaromatic conversion product under at least partial liquid phase conversion conditions in the presence of specific catalyst comprising a porous crystalline material, e.g. a crystalline aluminosilicate, and binder in the ratio of crystal/binder of from about 20/80 to about 60/40. The porous crystalline material of the catalyst may comprise a crystalline molecular sieve having the structure of Beta, an MCM-22 family material, e.g. MCM-49, or a mixture thereof.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 25, 2008
    Inventors: Michael C. Clark, Frederick Y. Lo, Christine N. Elia, Matthew J. Vincent
  • Publication number: 20080234157
    Abstract: The alkylaromatic compositions include an aromatic moiety other than unsubstituted naphthalene; and an alkyl moiety having a carbon atom number in the range between 12 to 40, wherein said alkyl moiety is attached to said aromatic moiety such that at least 25 mol % of the benzylic carbons are quaternary. The process for producing the alkylaromatic compositions include contacting at least one an aromatic compound and a mono-olefin having a carbon atom number in the range between 12 to 40 in the presence of an acidic alkylation catalyst under alkylation conditions, wherein at least 50 mol % of the mono-olefin structure comprises a vinylidenyl structure, and thereby producing said alkylaromatic compound having at least 25 mol % of benzylic carbons that are quaternary. The alkylaromatic compositions disclosed herein are liquids that have improved thermo- and oxidative stability and pour point.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 25, 2008
    Inventors: Beth A. Yoon, Margaret M. Wu, Christine N. Elia
  • Publication number: 20080194897
    Abstract: The present disclosure provides a process for selectively producing a desired monoalkylated aromatic compound comprising the step of contacting in a reaction zone an alkylatable aromatic compound with an alkylating agent in the presence of catalyst comprising a porous crystalline material under at least partial liquid phase conditions, said catalyst manufactured from extrudate to comprise catalytic particulate material of from about 125 microns to about 790 microns in size, having an Effectiveness Factor increased from about 25% to about 750% from that of the original extrudate, and having an external surface area to volume ratio of greater than about 79 cm?1.
    Type: Application
    Filed: January 25, 2008
    Publication date: August 14, 2008
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Mathew J. Vincent
  • Publication number: 20080154080
    Abstract: A catalyst composition comprises a crystalline MCM-22 family molecular sieve and a binder, wherein the catalyst composition is characterized by an extra-molecular sieve porosity greater than or equal to 0.122 ml/g for pores having a pore diameter ranging from about 2 nm to about 8 nm, wherein the porosity is measured by N2 porosimetry. The catalyst composition may be used for the process of alkylation or transalkylation of an alkylatable aromatic compound with an alkylating agent. The molecular sieve may have a Constraint Index of less than 12, e.g., less than 2.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Inventors: Mohan Kalyanoraman, Christine N. Elia, Darryl D. Lacy, Jean W. Beeckman, Michael C. Clark
  • Publication number: 20080154081
    Abstract: A catalyst composition comprises (a) a MCM-22 family molecular sieve; and (b) a binder, wherein the MCM-22 family molecular sieve is characterized by an average crystal agglomerate size of less than or equal to 16 microns. The catalyst composition may further have a second molecular sieve having a Constraint Index of less than 12, e.g., less than 2. Examples of molecular sieve useful for this disclosure are a MCM-22 family molecular sieve, zeolite Y, and zeolite Beta. The catalyst composition may be used for the process of alkylation or transalkylation of an alkylatable aromatic compound with an alkylating agent.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Inventors: Christine N. Elia, Frederick Y. Lo, Michael C. Clark, Morris C. Smith, Michael Hryniszak, Mohan Kalyanaraman
  • Patent number: 7381676
    Abstract: This disclosure relates to a catalyst composition comprising (a) a crystalline MCM-49 molecular sieve; and (b) a binder comprising at least 1 wt. % of a titanium compound. In one aspect of this disclosure, the titanium compound comprises at least one of titanium oxide, titanium hydroxide, titanium sulfate, titanium phosphate, or any combination thereof. In another aspect of this disclosure, the catalyst composition further comprises a crystalline MCM-22 family molecular sieve comprising at least one of MCM-22, MCM-36, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-30, PSH-3, ERB-1, SSZ-25, or any combination thereof. In other embodiments, this disclosure relates to a process for preparing the catalyst composition of this disclosure, the process comprises (a) providing the crystalline MCM-49 molecular sieve and the binder comprising at least 1 wt. % of a titanium compound to form a mixture; and (b) forming the mixture into the catalyst composition. In a preferred embodiment, the forming step comprises extruding.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: June 3, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christine N. Elia, Frederick Y. Lo, Jeffrey T. Elks, Darryl D. Lacy, Mohan Kalyanaraman
  • Patent number: 7271118
    Abstract: A catalyst system that exhibits a ratio of ethylene saturation to aromatics ring saturation of greater than 3,500. The catalyst system comprises two components and each component comprises a crystalline molecular sieve having a Constraint Index of from about 1 to about 12 and an effective amount of Group VIII metal. The catalyst system finds particular application in ethylbenzene conversion/xylenes isomerization reactions. The catalyst system can be prepared by incorporating the Group VIII metal into the molecular sieves by competitive ion exchange.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: September 18, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Brenda A. Raich, Robert A. Crane, Christine N. Elia, Teresa A. Jurgens-Kowal, Gary D. Mohr, David L. Stern
  • Publication number: 20070191659
    Abstract: The invention relates to a crystalline molecular sieve composition which is obtainable by crystallizing a pre-formed extrudate mixture in a reactor and, during crystallization, removing excess alkali metal hydroxide from the pre-formed extrudate. The pre-formed extrudate mixture comprises at least one source of ions of tetravalent element Y, at least one source of alkali metal hydroxide, water, optionally at least one seed crystal, and optionally at least one source of ions of trivalent element X. The reaction mixture has the following mole composition: Y:X2=10 to infinity; OH?:Y=0.001 to 2; and M+:Y=0.001 to 2; wherein M is an alkali metal. The amount of water in the mixture is at least sufficient to permit extrusion of said reaction mixture.
    Type: Application
    Filed: January 26, 2007
    Publication date: August 16, 2007
    Inventors: Wenyih Frank Lai, Robert Ellis Kay, Christine N. Elia, Frederick Y. Lo, David O. Marler
  • Publication number: 20030023013
    Abstract: Methods for the addition polymerization of cycloolefins using a cationic Group 10 metal complex and a weakly coordinating anion of the formula:
    Type: Application
    Filed: July 16, 2002
    Publication date: January 30, 2003
    Applicant: The B.F.Goodrich Company
    Inventors: John-Henry Lipian, Larry F. Rhodes, Brian L. Goodall, Andrew Bell, Richard A. Mimna, John C. Fondran, Saikumar Jayaraman, April D. Hennis, Christine N. Elia, Jennifer D. Polley, Ayusman Sen
  • Patent number: 6455650
    Abstract: Methods for the addition polymerization of cycloolefins using a cationic Group 10 metal complex and a weakly coordinating anion of the formula: [(R′)zM(L′)x(L″)y]b[WCA]d wherein [(R′)zM(L′)x(L″)y] is a cation complex where M represents a Group 10 transition metal; R′ represents an anionic hydrocarbyl containing ligand; L′ represents a Group 15 neutral electron donor ligand; L″ represents a labile neutral electron donor ligand; x is 1 or 2; and y is 0, 1, 2, or 3; and z is 0 or 1, wherein the sum of x, y, and z is 4; and [WCA] represents a weakly coordinating counteranion complex; and b and d are numbers representing the number of times the cation complex and weakly coordinating counteranion complex are taken to balance the electronic charge on the overall catalyst complex.
    Type: Grant
    Filed: October 5, 1999
    Date of Patent: September 24, 2002
    Assignees: The B.F. Goodrich Company, The Penn State Research Foundation
    Inventors: John-Henry Lipian, Larry F. Rhodes, Brian L. Goodall, Andrew Bell, Richard A. Mimna, John C. Fondran, Saikumar Jayaraman, April D. Hennis, Christine N. Elia, Jennifer D. Polley, Ayusman Sen
  • Publication number: 20020052454
    Abstract: Methods for the addition polymerization of cycloolefins using a cationic Group 10 metal complex and a weakly coordinating anion of the formula:
    Type: Application
    Filed: October 5, 1999
    Publication date: May 2, 2002
    Inventors: JOHN-HENRY LIPIAN, LARRY F. RHODES, BRIAN L. GOODALL, ANDREW BELL, RICHARD A. MIMNA, JOHN C. FONDRAN, SAIKUMAR JAYARAMAN, APRIL D. HENNIS, CHRISTINE N. ELIA, JENNIFER D. POLLEY, AYUSMAN SEN