Patents by Inventor Christine Nicole Elia

Christine Nicole Elia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9433936
    Abstract: Provided are catalysts including: a zeolite component selected from zeolites having 10-member ring pores, zeolites having 12-member ring pores and a combination thereof, 0.1 to 5 weight % of a hydrogenation component selected from Pt, Pd, Ag, Ni, Co, Mo, W, Rh, Re, Ru, Ir and a mixture thereof, and a hydrothermally stable binder component selected from tantalum oxide, tungsten oxide, molybdenum oxide, vanadium oxide, magnesium oxide, calcium oxide, yttrium oxide, lanthanum oxide, cerium oxide, niobium oxide, tungstated zirconia, cobalt molybdenum oxide, cobalt molybdenum sulfide, nickel molybdenum oxide, nickel molybdenum sulfide, nickel tungsten oxide, nickel tungsten sulfide, cobalt tungsten oxide, cobalt tungsten sulfide, nickel molybdenum tungsten oxide and nickel molybdenum tungsten sulfide, cobalt molybdenum tungsten oxide and cobalt molybdenum tungsten sulfide, wherein the weight ratio of the zeolite to the hydrothermally stable binder is 85:15 to 25:75.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: September 6, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Scott J. Weigel, Joseph Emmanuel Gatt, Darryl Donald Lacy, Randall D. Partidge, Kun Wang, Lei Zhang, Christine Nicole Elia
  • Patent number: 9309472
    Abstract: Methods are provided for improving the yield of distillate products from hydroprocessing of gas oil feedstocks, such as vacuum gas oils. It has been unexpectedly found that stripping of gases or fractionation to separate out a distillate fraction during initial hydrotreatment of a feed can provide a substantial increase in distillate yield at a desired amount of feedstock conversion. The improvement in yield of distillate products can allow a desired level of conversion to be performed on a feedstock for generating lubricating base oil products while reducing or minimizing the amount of naphtha (or lower) boiling range products. Alternatively, the improvement in yield of distillate products can correspond to an improved yield during a single pass through a reaction system, so that distillate yield is increased even though a lubricant boiling range product is not generated.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: April 12, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Rohit Vijay, Ajit Bhaskar Dandekar, Michel Daage, Christopher G. Oliveri, Christine Nicole Elia, Darryl Donald Lacy, Scott J. Weigel, Bradley R. Fingland
  • Publication number: 20150152343
    Abstract: Methods are provided for improving the yield of distillate products from hydroprocessing of gas oil feedstocks, such as vacuum gas oils. It has been unexpectedly found that stripping of gases or fractionation to separate out a distillate fraction during initial hydrotreatment of a feed can provide a substantial increase in distillate yield at a desired amount of feedstock conversion. The improvement in yield of distillate products can allow a desired level of conversion to be performed on a feedstock for generating lubricating base oil products while reducing or minimizing the amount of naphtha (or lower) boiling range products. Alternatively, the improvement in yield of distillate products can correspond to an improved yield during a single pass through a reaction system, so that distillate yield is increased even though a lubricant boiling range product is not generated.
    Type: Application
    Filed: November 14, 2014
    Publication date: June 4, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Rohit VIJAY, Ajit Bhaskar DANDEKAR, Michel DAAGE, Christopher G. OLIVERI, Christine Nicole ELIA, Darryl Donald LACY, Scott J. WEIGEL, Bradley R. FINGLAND
  • Patent number: 8906224
    Abstract: Sweet and sour lubricant feeds are block and continuous processed to produce lubricant basestocks. Total liquid product yields at a desired pour point are maintained for catalytic dewaxing of both sweet and sour conditions. The desired pour point is achieved for both the sweet and sour feeds by varying the catalytic dewaxing reaction temperature as a function of sulfur content entering the reactor.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: December 9, 2014
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Krista Marie Prentice, Michel Daage, Gary Paul Schleicher, Christine Nicole Elia, Stephen J. McCarthy, Wenyih F. Lai, Shifang L. Luo, Robert Andrew Migliorini
  • Publication number: 20140274664
    Abstract: Provided are catalysts including: a zeolite component selected from zeolites having 10-member ring pores, zeolites having 12-member ring pores and a combination thereof, 0.1 to 5 weight % of a hydrogenation component selected from Pt, Pd, Ag, Ni, Co, Mo, W, Rh, Re, Ru, Ir and a mixture thereof, and a hydrothermally stable binder component selected from tantalum oxide, tungsten oxide, molybdenum oxide, vanadium oxide, magnesium oxide, calcium oxide, yttrium oxide, lanthanum oxide, cerium oxide, niobium oxide, tungstated zirconia, cobalt molybdenum oxide, cobalt molybdenum sulfide, nickel molybdenum oxide, nickel molybdenum sulfide, nickel tungsten oxide, nickel tungsten sulfide, cobalt tungsten oxide, cobalt tungsten sulfide, nickel molybdenum tungsten oxide and nickel molybdenum tungsten sulfide, cobalt molybdenum tungsten oxide and cobalt molybdenum tungsten sulfide, wherein the weight ratio of the zeolite to the hydrothermally stable binder is 85:15 to 25:75.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 18, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Scott J. Weigel, Joseph Emmanuel Gatt, Darryl Donald Lacy, Randall D. Partidge, Kun Wang, Lei Zhang, Christine Nicole Elia
  • Publication number: 20140275688
    Abstract: Provided are methods for producing a lube base stock and/or a fuel from a feedstock of biological origin, the method including: contacting the feedstock in the presence of a catalyst to produce a lube base stock and/or a fuel, wherein the catalyst comprises: a zeolite component selected from a zeolite having 10-member ring pores, a zeolite having 12-member ring pores and a combination thereof, 0.1 to 5 weight % of a hydrogenation component selected from Pt, Pd, Ag, Ni, Co, Mo, W, Rh, Re, Ru, Ir and a mixture thereof, and a hydrothermally stable binder component.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 18, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Scott J. Weigel, Joseph Emmanuel Gatt, Darryl Donald Lacy, Randall D. Partridge, Kun Wang, Lei Zhang, Christine Nicole Elia, Jenna Lynn Walp
  • Patent number: 8366908
    Abstract: An integrated process for producing lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants, or a high pressure separation can be used to partially eliminate contaminants.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: February 5, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Krista Marie Prentice, Gary Paul Schleicher, Lei Zhang, Timothy Lee Hilbert, Michel A. Daage, Sylvain Hantzer, Wenyih F. Lai, David Mentzer, William Francis Heaney, Christine Nicole Elia, Shifang Luo, Stephen J. McCarthy, Mohan Kalyanaraman
  • Publication number: 20110180453
    Abstract: In a catalytic dewaxing process, a catalyst comprising from 40 to 80 wt % of ZSM-48 having a silica to alumina molar ratio of less than 200:1 and from 0.3 to 1.5 wt % of a metal or metal compound from Groups 8 to 10 of the Periodic Table of the Elements is provided in a reaction zone. The catalyst is periodically contacted in the reaction zone under dewaxing conditions with a first hydrocarbon feedstock having a wax content of less than 50 wt % and with a second hydrocarbon feedstock having a wax content of 50 wt % or more.
    Type: Application
    Filed: December 21, 2010
    Publication date: July 28, 2011
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Christine Nicole Elia, Timothy Lee Hilbert, Louis F. Burns, Eric D. Joseck, Jeenok Theresa Kim, Sylvain S. Hantzer
  • Publication number: 20110174684
    Abstract: Sweet and sour lubricant feeds are block and continuous processed to produce lubricant basestocks. Total liquid product yields at a desired pour point are maintained for catalytic dewaxing of both sweet and sour conditions. The desired pour point is achieved for both the sweet and sour feeds by varying the catalytic dewaxing reaction temperature as a function of sulfur content entering the reactor.
    Type: Application
    Filed: December 22, 2010
    Publication date: July 21, 2011
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Krista Marie Prentice, Michel Daage, Gary Paul Schleicher, Christine Nicole Elia, Stephen J. McCarthy, Wenyih F. Lai, Shifang L. Luo, Robert Andrew Migliorini
  • Patent number: 7799962
    Abstract: This invention relates to a process for the selective alkylation of toluene and/or benzene with an oxygen-containing alkylation agent. In particular, the process uses a selectivated molecular sieve which has been modified by the addition of a hydrogenation component, wherein at least one of the following conditions is met: (a) the selectivated molecular sieve has an alpha value of less than 100 prior to the addition of the hydrogenation component, or (b) the selectivated and hydrogenated catalyst has an alpha value of less than 100. The process of this invention provides high selectivity for the alkylated product while reducing catalyst degradation.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: September 21, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad Mohammed Dakka, John Scott Buchanan, Robert Andrew Crane, Christine Nicole Elia, Xiaobing Feng, Larry Lee Iaccino, Gary David Mohr, Brenda Anne Raich, Jose′ Guadalupe Santiesteban, Lei Zhang
  • Publication number: 20100187156
    Abstract: An integrated process for producing lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants, or a high pressure separation can be used to partially eliminate contaminants.
    Type: Application
    Filed: December 23, 2009
    Publication date: July 29, 2010
    Inventors: Krista Marie Prentice, Gary Paul Schleicher, Lei Zhang, Timothy Lee Hilbert, Michel A. Daage, Sylvain Hantzer, Wenyih F. Lai, David Mentzer, William Francis Heaney, Christine Nicole Elia, Shifang Luo, Stephen J. McCarthy, Mohan Kalyanaraman
  • Patent number: 7547805
    Abstract: The present invention relates to a process for the production of severely sterically hindered amino-ether alcohols using a catalyst based on the combination of one or more catalytically active metals supported in a dispersed form on one or more ordered mesoporous materials as support.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: June 16, 2009
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Andrzej Malek, Christine Nicole Elia, Adeana Richelle Bishop, Edmund John Mozeleski, Michael Siskin
  • Patent number: 7538251
    Abstract: Severely sterically hindered secondary aminoether alcohols are prepared by a process comprising reacting a ketene with sulfuric acid to produce an anhydride which is then reacted with, to cleave the ring of, a dioxane to yield a cleavage product which is then aminated using an amine, followed by hydrolysis with a base to yield the desired severely sterically hindered secondary aminoether alcohol.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: May 26, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Alan Roy Katritzky, Kostyantyn Mykolayevich Kirichenko, Adeana Richelle Bishop, Christine Nicole Elia
  • Patent number: 7524990
    Abstract: Severely sterically hindered secondary aminoether alcohols are prepared by reacting organic carboxylic, organic carboxylic acid halides, acid anhydrides or a ketene with an alkyl, alkaryl or alkylhalo sulfonate to yield a sulfonic-carboxylic anhydride compound which is then reacted with a dioxane to cleave the ring of the dioxane, yielding a cleavage product which cleavage product is then aminated with an alkylamine and hydrolyzed with base to yield the severely sterically hindered secondary aminoether alcohol.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: April 28, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Alan Roy Katritzky, Kostyantyn Mykolayevich Kirichenko, Adeana Richelle Bishop, Christine Nicole Elia
  • Publication number: 20090012338
    Abstract: This invention relates to a process for the selective alkylation of toluene and/or benzene with an oxygen-containing alkylation agent. In particular, the process uses a selectivated molecular sieve which has been modified by the addition of a hydrogenation component, wherein at least one of the following conditions is met: (a) the selectivated molecular sieve has an alpha value of less than 100 prior to the addition of the hydrogenation component, or (b) the selectivated and hydrogenated catalyst has an alpha value of less than 100. The process of this invention provides high selectivity for the alkylated product while reducing catalyst degradation.
    Type: Application
    Filed: September 10, 2008
    Publication date: January 8, 2009
    Inventors: Jihad Mohammed Dakka, John Scott Buchanan, Robert Andrew Crane, Christine Nicole Elia, Xiaobing Feng, Larry Lee Iaccino, Gary David Mohr, Brenda Anne Raich, Jose' Guadalupe Santiesteban, Lei Zhang
  • Patent number: 7453018
    Abstract: This invention relates to a process for the selective alkylation of toluene and/or benzene with an oxygen-containing alkylation agent. In particular, the process uses a selectivated molecular sieve which has been modified by the addition of a hydrogenation component, wherein at least one of the following conditions is met: (a) the selectivated molecular sieve has an alpha value of less than 100 prior to the addition of the hydrogenation component, or (b) the selectivated and hydrogenated catalyst has an alpha value of less than 100. The process of this invention provides high selectivity for the alkylated product while reducing catalyst degradation.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: November 18, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad Mohammed Dakka, John Scott Buchanan, Robert Andrew Crane, Christine Nicole Elia, Xiaobing Feng, Larry Lee Iaccino, Gary David Mohr, Brenda Anne Raich, Jose′ Guadalupe Santiesteban, Lei Zhang
  • Patent number: 7442840
    Abstract: The present invention relates to a process for preparing severely sterically hindered secondary amine ether alcohols and diamine polyalkenyl ethers by reacting a primary amino compound with a polyalkenylether glycol in the presence of a high activity nickel powder hydrogenation catalyst which is marked by high conversion of reactants and increased selectivity to desired final product.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: October 28, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Christine Nicole Elia, Michael Siskin, Michael Charles Kerby, Adeana Richelle Bishop, Edmund John Mozeleski, Andrzej Malek
  • Patent number: 7351865
    Abstract: Severely sterically hindered secondary aminoether alcohols are prepared by reacting acid anhydrides or organic carboxylic acid halides with SO3 to yield a sulfonic carboxylic anhydride compound which is then reacted with a dioxane to cleave the ring of the dioxane yielding a cleavage product which is then aminated with an alkylamine and hydrolyzed with a base to yield the severely sterically hindered secondary aminoether alcohol.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: April 1, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Alan Roy Katritzky, Kostyantyn Mykolayevich Kirichenko, Adeana Richelle Bishop, Christine Nicole Elia
  • Publication number: 20080058553
    Abstract: The present invention relates to a process for preparing severely sterically hindered secondary amine ether alcohols and diamine polyalkenyl ethers by reacting a primary amino compound with a polyalkenylether glycol in the presence of a high activity nickel powder hydrogenation catalyst which is marked by high conversion of reactants and increased selectivity to desired final product.
    Type: Application
    Filed: February 1, 2005
    Publication date: March 6, 2008
    Inventors: Christine Nicole Elia, Michael Siskin, Michael Charles Kerby, Adeana Richelle Bishop, Edmund John Mozeleski, Andrzej Malek