Patents by Inventor Christine Russ

Christine Russ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230301723
    Abstract: The present disclosure is directed to augmented reality navigation systems and methods of their use that, inter alia, address the need for systems and methods of robotic surgical system navigation with reduced distraction to surgeons. Augmented reality navigation systems disclosed herein enable a surgeon to maintain focus on a surgical site and/or surgical tool being used in a surgical procedure while obtaining a wide range of navigational information relevant to the procedure. Navigational information can appear in the augmented reality navigation system as being presented on virtual displays that sit in a natural field of view of a surgeon during a procedure. Navigational information can also appear to be overlaid over a patient’s anatomy. Augmented reality navigation systems comprise a head mounted display comprising an at least partially transparent display screen, at least one detector connected to the head mounted display for identifying real-world features, and a computer subsystem.
    Type: Application
    Filed: March 6, 2023
    Publication date: September 28, 2023
    Inventors: Norbert Johnson, Jeffrey Forsyth, Neil Crawford, Sanjay Joshi, Bessam Al Jewad, Weston Healy, Christine Russ, Ken Jones
  • Publication number: 20210169581
    Abstract: A surgical system including a XR headset, a tracking system, and an XR headset controller. The XR headset can be worn by a user during a surgical procedure and includes a see-through display screen configured to display a world-registered XR image and to allow at least a portion of a real-world scene to pass therethrough for viewing by the user. The tracking system can determine a real-world pose of the XR headset and a real-world pose of a real-world element. The real-world pose of the XR headset and the real-world pose of the real-world element being determined relative to a real-world coordinate system. The XR headset controller can generate the world-registered XR image based on the real-world pose of the XR headset and the real-world pose of the real-world element. The world-registered XR image includes a virtual element that is generated based on a characteristic of the real-world element.
    Type: Application
    Filed: February 4, 2020
    Publication date: June 10, 2021
    Inventors: Thomas Calloway, Isaac Dulin, Keiichi Matsuda, Christine Russ, Keerthighaan Kanagasegar, Amelia Raphaelson
  • Publication number: 20210169605
    Abstract: A surgical robot positions an end effector that guides movement of a surgical tool during a surgical procedure on a patient anatomical structure. A tracking system determines a pose of the anatomical structure and a pose of the end effector and/or the surgical tool. A navigation controller determines a target pose for the surgical tool based on a surgical plan and based on the pose of the anatomical structure, and generates steering information based on the target pose for the surgical tool, the pose of the anatomical structure, and the pose of the surgical tool and/or the end effector. The steering information indicates where the surgical tool and/or the end effector need to be moved. An AR headset controller receives the steering information from the navigation controller and displays a graphical representation of the steering information and/or the target pose for the surgical tool on a see-through display screen.
    Type: Application
    Filed: December 10, 2019
    Publication date: June 10, 2021
    Inventors: Thomas Calloway, Weston Healy, Isaac Dulin, Dale Earle, Keiichi Matsuda, Norbert Johnson, Bessam Al Jewad, Christine Russ, Michael Robinson, Keerthighaan Kanagasegar
  • Publication number: 20200246081
    Abstract: The present disclosure is directed to augmented reality navigation systems and methods of their use that, inter alia, address the need for systems and methods of robotic surgical system navigation with reduced distraction to surgeons. Augmented reality navigation systems disclosed herein enable a surgeon to maintain focus on a surgical site and/or surgical tool being used in a surgical procedure while obtaining a wide range of navigational information relevant to the procedure. Navigational information can appear in the augmented reality navigation system as being presented on virtual displays that sit in a natural field of view of a surgeon during a procedure. Navigational information can also appear to be overlaid over a patient's anatomy. Augmented reality navigation systems comprise a head mounted display comprising an at least partially transparent display screen, at least one detector connected to the head mounted display for identifying real-world features, and a computer subsystem.
    Type: Application
    Filed: April 6, 2020
    Publication date: August 6, 2020
    Inventors: Norbert Johnson, Jeffrey Forsyth, Neil Crawford, Sanjay Joshi, Bessam Al Jewad, Weston Healy, Christine Russ, Ken Jones
  • Patent number: 10646283
    Abstract: The present disclosure is directed to augmented reality navigation systems and methods of their use that, inter alia, address the need for systems and methods of robotic surgical system navigation with reduced distraction to surgeons. Augmented reality navigation systems disclosed herein enable a surgeon to maintain focus on a surgical site and/or surgical tool being used in a surgical procedure while obtaining a wide range of navigational information relevant to the procedure. Navigational information can appear in the augmented reality navigation system as being presented on virtual displays that sit in a natural field of view of a surgeon during a procedure. Navigational information can also appear to be overlaid over a patient's anatomy. Augmented reality navigation systems comprise a head mounted display comprising an at least partially transparent display screen, at least one detector connected to the head mounted display for identifying real-world features, and a computer subsystem.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: May 12, 2020
    Assignee: Globus Medical Inc.
    Inventors: Norbert Johnson, Jeffrey Forsyth, Neil Crawford, Sanjay Joshi, Bessam Al Jewad, Weston Healy, Christine Russ, Ken Jones
  • Publication number: 20190254754
    Abstract: The present disclosure is directed to augmented reality navigation systems and methods of their use that, inter alia, address the need for systems and methods of robotic surgical system navigation with reduced distraction to surgeons. Augmented reality navigation systems disclosed herein enable a surgeon to maintain focus on a surgical site and/or surgical tool being used in a surgical procedure while obtaining a wide range of navigational information relevant to the procedure. Navigational information can appear in the augmented reality navigation system as being presented on virtual displays that sit in a natural field of view of a surgeon during a procedure. Navigational information can also appear to be overlaid over a patient's anatomy. Augmented reality navigation systems comprise a head mounted display comprising an at least partially transparent display screen, at least one detector connected to the head mounted display for identifying real-world features, and a computer subsystem.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 22, 2019
    Inventors: Norbert Johnson, Jeffrey Forsyth, Neil Crawford, Sanjay Joshi, Bessam Al Jewad, Weston Healy, Christine Russ, Ken Jones
  • Publication number: 20190254753
    Abstract: The present disclosure is directed to augmented reality navigation systems and methods of their use that, inter alia, address the need for systems and methods of robotic surgical system navigation with reduced distraction to surgeons. Augmented reality navigation systems disclosed herein enable a surgeon to maintain focus on a surgical site and/or surgical tool being used in a surgical procedure while obtaining a wide range of navigational information relevant to the procedure. Navigational information can appear in the augmented reality navigation system as being presented on virtual displays that sit in a natural field of view of a surgeon during a procedure. Navigational information can also appear to be overlaid over a patient's anatomy. Augmented reality navigation systems comprise a head mounted display comprising an at least partially transparent display screen, at least one detector connected to the head mounted display for identifying real-world features, and a computer subsystem.
    Type: Application
    Filed: February 19, 2018
    Publication date: August 22, 2019
    Inventors: Norbert Johnson, Jeffrey Forsyth, Neil Crawford, Sanjay Joshi, Bessam Al Jewad, Weston Healy, Christine Russ, Ken Jones