Patents by Inventor Christine Schmidt

Christine Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11890344
    Abstract: The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: February 6, 2024
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sarah Mayes, Christine Schmidt
  • Publication number: 20230383086
    Abstract: The present invention includes a hydrogel and a method of making a porous hydrogel by preparing an aqueous mixture of an uncrosslinked polymer and a crystallizable molecule; casting the mixture into a vessel; allowing the cast mixture to dry to form an amorphous hydrogel film; seeding the cast mixture with a seed crystal of the crystallizable molecule; growing the crystallizable molecule into a crystal structure within the uncrosslinked polymer; crosslinking the polymer around the crystal structure under conditions in which the crystal structure within the crosslinked polymer is maintained; and dissolving the crystals within the crosslinked polymer to form the porous hydrogel.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 30, 2023
    Inventors: Scott Zawko, Christine Schmidt
  • Patent number: 11760858
    Abstract: The present invention includes a hydrogel and a method of making a porous hydrogel by preparing an aqueous mixture of an uncrosslinked polymer and a crystallizable molecule; casting the mixture into a vessel; allowing the cast mixture to dry to form an amorphous hydrogel film; seeding the cast mixture with a seed crystal of the crystallizable molecule; growing the crystallizable molecule into a crystal structure within the uncrosslinked polymer; crosslinking the polymer around the crystal structure under conditions in which the crystal structure within the crosslinked polymer is maintained; and dissolving the crystals within the crosslinked polymer to form the porous hydrogel.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: September 19, 2023
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Scott Zawko, Christine Schmidt
  • Publication number: 20220160877
    Abstract: The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
    Type: Application
    Filed: February 11, 2022
    Publication date: May 26, 2022
    Inventors: Sarah Mayes, Christine Schmidt
  • Patent number: 11246937
    Abstract: The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: February 15, 2022
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Sarah Mayes, Christine Schmidt
  • Publication number: 20210238379
    Abstract: The present invention includes a hydrogel and a method of making a porous hydrogel by preparing an aqueous mixture of an uncrosslinked polymer and a crystallizable molecule; casting the mixture into a vessel; allowing the cast mixture to dry to form an amorphous hydrogel film; seeding the cast mixture with a seed crystal of the crystallizable molecule; growing the crystallizable molecule into a crystal structure within the uncrosslinked polymer; crosslinking the polymer around the crystal structure under conditions in which the crystal structure within the crosslinked polymer is maintained; and dissolving the crystals within the crosslinked polymer to form the porous hydrogel.
    Type: Application
    Filed: April 15, 2021
    Publication date: August 5, 2021
    Inventors: Scott Zawko, Christine Schmidt
  • Patent number: 10982068
    Abstract: The present invention includes a hydrogel and a method of making a porous hydrogel by preparing an aqueous mixture of an uncrosslinked polymer and a crystallizable molecule; casting the mixture into a vessel; allowing the cast mixture to dry to form an amorphous hydrogel film; seeding the cast mixture with a seed crystal of the crystallizable molecule; growing the crystallizable molecule into a crystal structure within the uncrosslinked polymer; crosslinking the polymer around the crystal structure under conditions in which the crystal structure within the crosslinked polymer is maintained; and dissolving the crystals within the crosslinked polymer to form the porous hydrogel.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: April 20, 2021
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Scott Zawko, Christine Schmidt
  • Publication number: 20200062919
    Abstract: The present invention includes a hydrogel and a method of making a porous hydrogel by preparing an aqueous mixture of an uncrosslinked polymer and a crystallizable molecule; casting the mixture into a vessel; allowing the cast mixture to dry to form an amorphous hydrogel film; seeding the cast mixture with a seed crystal of the crystallizable molecule; growing the crystallizable molecule into a crystal structure within the uncrosslinked polymer; crosslinking the polymer around the crystal structure under conditions in which the crystal structure within the crosslinked polymer is maintained; and dissolving the crystals within the crosslinked polymer to form the porous hydrogel.
    Type: Application
    Filed: October 9, 2019
    Publication date: February 27, 2020
    Inventors: Scott Zawko, Christine Schmidt
  • Patent number: 10442911
    Abstract: The present invention includes a hydrogel and a method of making a porous hydrogel by preparing an aqueous mixture of an uncrosslinked polymer and a crystallizable molecule; casting the mixture into a vessel; allowing the cast mixture to dry to form an amorphous hydrogel film; seeding the cast mixture with a seed crystal of the crystallizable molecule; growing the crystallizable molecule into a crystal structure within the uncrosslinked polymer; crosslinking the polymer around the crystal structure under conditions in which the crystal structure within the crosslinked polymer is maintained; and dissolving the crystals within the crosslinked polymer to form the porous hydrogel.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: October 15, 2019
    Assignee: Board of Regents, The University of Texas System
    Inventors: Scott Zawko, Christine Schmidt
  • Publication number: 20190216933
    Abstract: The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
    Type: Application
    Filed: March 20, 2019
    Publication date: July 18, 2019
    Inventors: Sarah Mayes, Christine Schmidt
  • Patent number: 10279042
    Abstract: The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: May 7, 2019
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sarah Mayes, Christine Schmidt
  • Publication number: 20180163012
    Abstract: The present invention includes a hydrogel and a method of making a porous hydrogel by preparing an aqueous mixture of an uncrosslinked polymer and a crystallizable molecule; casting the mixture into a vessel; allowing the cast mixture to dry to form an amorphous hydrogel film; seeding the cast mixture with a seed crystal of the crystallizable molecule; growing the crystallizable molecule into a crystal structure within the uncrosslinked polymer; crosslinking the polymer around the crystal structure under conditions in which the crystal structure within the crosslinked polymer is maintained; and dissolving the crystals within the crosslinked polymer to form the porous hydrogel.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 14, 2018
    Inventors: Scott Zawko, Christine Schmidt
  • Patent number: 9896561
    Abstract: The present invention includes a hydrogel and a method of making a porous hydrogel by preparing an aqueous mixture of an uncrosslinked polymer and a crystallizable molecule; casting the mixture into a vessel; allowing the cast mixture to dry to form an amorphous hydrogel film; seeding the cast mixture with a seed crystal of the crystallizable molecule; growing the crystallizable molecule into a crystal structure within the uncrosslinked polymer; crosslinking the polymer around the crystal structure under conditions in which the crystal structure within the crosslinked polymer is maintained; and dissolving the crystals within the crosslinked polymer to form the porous hydrogel.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: February 20, 2018
    Assignee: Board of Regents, The University of Texas System
    Inventors: Scott Zawko, Christine Schmidt
  • Publication number: 20170209852
    Abstract: A method for controllably producing a hematite-containing Fischer-Tropsch catalyst by combining an iron nitrate solution with a precipitating agent solution at a precipitating temperature and over a precipitation time to form a precipitate comprising iron phases; holding the precipitate from at a hold temperature for a hold time to provide a hematite containing precipitate; and washing the hematite containing precipitate via contact with a wash solution and filtering, to provide a washed hematite containing catalyst. The method may further comprise promoting the washed hematite containing catalyst with a chemical promoter; spray drying the promoted hematite containing catalyst; and calcining the spray dried hematite containing catalyst to provide a calcined hematite-containing Fischer-Tropsch catalyst.
    Type: Application
    Filed: April 10, 2017
    Publication date: July 27, 2017
    Inventors: Dawid J. Duvenhage, Christine Schmidt, Mark Still, Khalid Azzam, Karl C. Kharas, Sara Hunegnaw, Olga Ionkina, Ray J. Huang, Harold A. Wright
  • Patent number: 9669390
    Abstract: A method for controllably producing a hematite-containing Fischer-Tropsch catalyst by combining an iron nitrate solution with a precipitating agent solution at a precipitating temperature and over a precipitation time to form a precipitate comprising iron phases; holding the precipitate from at a hold temperature for a hold time to provide a hematite containing precipitate; and washing the hematite containing precipitate via contact with a wash solution and filtering, to provide a washed hematite containing catalyst. The method may further comprise promoting the washed hematite containing catalyst with a chemical promoter; spray drying the promoted hematite containing catalyst; and calcining the spray dried hematite containing catalyst to provide a calcined hematite-containing Fischer-Tropsch catalyst.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: June 6, 2017
    Assignee: RES USA, LLC
    Inventors: Dawid J. Duvenhage, Christine Schmidt, Mark Still, Khalid Azzam, Karl C. Kharas, Sara Hunegnaw, Olga Ionkina, Ray J. Huang, Harold A. Wright
  • Patent number: 9671602
    Abstract: A method for optically measuring height profiles of surfaces, in which an image of the height profile is recorded using an optical recording system, is characterized in that the image is a differential interference contrast image and height gradients within the height profile are represented by intensity gradients, which are quantitatively or qualitatively evaluatable. The surfaces can have structures having a defined profile, in which intensity gradients in the differential interference contrast image, which assume, within a specified tolerance and within a specified range, a value which deviates from a predetermined value or assume a selected value from within a specified tolerance and within a specified range, indicate a defect.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: June 6, 2017
    Assignee: HSEB Dresden GmbH
    Inventors: Christine Schmidt, Bernd Srocka, Ralf Langhans
  • Publication number: 20160237235
    Abstract: The present invention includes a hydrogel and a method of making a porous hydrogel by preparing an aqueous mixture of an uncrosslinked polymer and a crystallizable molecule; casting the mixture into a vessel; allowing the cast mixture to dry to form an amorphous hydrogel film; seeding the cast mixture with a seed crystal of the crystallizable molecule; growing the crystallizable molecule into a crystal structure within the uncrosslinked polymer; crosslinking the polymer around the crystal structure under conditions in which the crystal structure within the crosslinked polymer is maintained; and dissolving the crystals within the crosslinked polymer to form the porous hydrogel.
    Type: Application
    Filed: April 22, 2016
    Publication date: August 18, 2016
    Inventors: Scott Zawko, Christine Schmidt
  • Patent number: 9320827
    Abstract: The present invention includes a hydrogel and a method of making a porous hydrogel by preparing an aqueous mixture of an uncrosslinked polymer and a crystallizable molecule; casting the mixture into a vessel; allowing the cast mixture to dry to form an amorphous hydrogel film; seeding the cast mixture with a seed crystal of the crystallizable molecule; growing the crystallizable molecule into a crystal structure within the uncrosslinked polymer; crosslinking the polymer around the crystal structure under conditions in which the crystal structure within the crosslinked polymer is maintained; and dissolving the crystals within the crosslinked polymer to form the porous hydrogel.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: April 26, 2016
    Assignee: Board of Regents, The University of Texas System
    Inventors: Scott Zawko, Christine Schmidt
  • Publication number: 20160001267
    Abstract: A method for controllably producing a hematite-containing Fischer-Tropsch catalyst by combining an iron nitrate solution with a precipitating agent solution at a precipitating temperature and over a precipitation time to form a precipitate comprising iron phases; holding the precipitate from at a hold temperature for a hold time to provide a hematite containing precipitate; and washing the hematite containing precipitate via contact with a wash solution and filtering, to provide a washed hematite containing catalyst. The method may further comprise promoting the washed hematite containing catalyst with a chemical promoter; spray drying the promoted hematite containing catalyst; and calcining the spray dried hematite containing catalyst to provide a calcined hematite-containing Fischer-Tropsch catalyst.
    Type: Application
    Filed: February 11, 2014
    Publication date: January 7, 2016
    Inventors: Dawid J. Duvenhage, Christine Schmidt, Mark Still, Khalid Azzam, Karl C. Kharas, Sara Hunegnaw, Olga Ionkina, Ray J. Huang, Harold A. Wright
  • Patent number: 9229208
    Abstract: An assembly for the generation of a differential interference contrast image (DIC) of an object in an imaging plane, comprising a radiation source; a Köhler illuminating optical assembly for illuminating the object with light from the radiation source; an objective for imaging the object plane in an imaging plane, wherein the objective is provided with an exit pupil and an entrance pupil, and wherein the entrance pupil of the objective is positioned in the illuminating pupil of the Köhler illuminating optical assembly; and a component for the generation of an interference is characterized in that the component for the generation of an interference is positioned in the exit pupil of the objective, and the component for the generation of an interference is formed by an amplitude filter with an amplitude transmission factor FDIC(x,y), which complies with the equation: 2 · F DIC ? ( x , y ) = F + ? ( x , y ) · ? + ? ? ? P 0 + F - ? ( x , y ) = 2 · T 0 · cos ? (
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: January 5, 2016
    Assignee: HSEB Dresden GmbH
    Inventor: Christine Schmidt