Patents by Inventor Christine Toepfer
Christine Toepfer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9279138Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of the polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of the polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in the microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.Type: GrantFiled: February 10, 2006Date of Patent: March 8, 2016Assignee: DSM ASSETS B.V.Inventors: Tatsuo Hoshino, Masako Shinjoh, Christine Toepfer, Noribumi Tomiyama
-
Patent number: 9115378Abstract: The present invention relates to newly identified microorganisms capable of direct production of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also relates to polynucleotide sequences comprising genes that encode proteins which are involved in the synthesis of Vitamin C. The invention also features polynucleotides comprising the full length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism.Type: GrantFiled: October 17, 2012Date of Patent: August 25, 2015Assignee: DSM IP ASSETS B.V.Inventors: Marie-Gabrielle Beuzelin-Ollivier, Bastien Chevreux, Manuela Dalluege, Marina Van Gelder, Markus G. Goese, Corina Hauk, Bertus P. Koekman, Connie Lee, Anne F. Mayer, Anja Meury, Nigel J. Mouncey, Dick Schipper, Masako Shinjoh, Christine Toepfer, Adrianus W. H. Vollebregt
-
Publication number: 20130059920Abstract: This invention is related to the use of hydroxytyrosol (“HT”), or an olive juice extract containing hydroxytyrosol as an agent to improve muscle differentiation and thus improve or maintain the body's adaptation to exercise. It is also related to the use of hydroxytyrosol (“HT”), or an olive juice extract containing hydroxytyrosol as an agent to improve calcium signaling and to improve skeletal muscle contraction and relaxation. It also relates to pharmaceutical and nutraceutical compositions useful for conditions characterized by altered muscle differentiation especially under inflammatory conditions, such as delayed onset muscle soreness subsequent to strenuous exercise or sarcopenia.Type: ApplicationFiled: July 17, 2012Publication date: March 7, 2013Applicant: DSM IP ASSETS, B.V.Inventors: Angelika FRIEDEL, Daniel Raederstorff, Franz Roos, Christine Toepfer, Karin Wertz
-
Patent number: 8318462Abstract: The present invention relates to newly identified microorganisms capable of direct production of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also relates to polynucleotide sequences comprising genes that encode proteins which are involved in the synthesis of Vitamin C. The invention also features polynucleotides comprising the full length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism.Type: GrantFiled: August 1, 2007Date of Patent: November 27, 2012Assignee: DSM IP Assets B.V.Inventors: Marie-Gabrielle Beuzelin-Ollivier, Bastian Chevreux, Manuela Dalluege, Marina Van Gelder, Markus G. Goese, Corina Hauk, Bertus P. Koekman, Connie Lee, Anne F. Mayer, Anja Meury, Nigel J. Mouncey, Dick Schipper, Masako Shinjoh, Christine Toepfer, Adrianus W. H. Vollebregt
-
Publication number: 20100248315Abstract: The present invention relates to newly identified microorganisms capable of direct production of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also relates to polynucleotide sequences comprising genes that encode proteins which are involved in the synthesis of Vitamin C. The invention also features polynucleotides comprising the full length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism.Type: ApplicationFiled: August 1, 2007Publication date: September 30, 2010Inventors: Marie-Gabrielle Beuzelin-Ollivier, Bastian Chevreux, Manuela Dalluegge, Marina Van Gelder, Markus G. Goese, Corina Hauk, Bertus P. Koekman, Connie Lee, Anne F. Mayer, Anja Meury, Nigel J. Mouncey, Dick Schipper, Masako Shinjoh, Christine Toepfer, Adrianus W.H. Vollebregt
-
Publication number: 20090142815Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.Type: ApplicationFiled: February 10, 2006Publication date: June 4, 2009Inventors: Tatsuo Hoshino, Masako Shinjoh, Christine Toepfer, Noribumi Tomiyama
-
Publication number: 20080118960Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also refeixed to as Vitamin C), The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.Type: ApplicationFiled: February 10, 2006Publication date: May 22, 2008Inventors: Bastian Chevreux, Anne F. Mayer, Masako Shinjoh, Christine Toepfer