Patents by Inventor Christine Trepanier

Christine Trepanier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130053939
    Abstract: An article cut from a metallic sheet, has a first pattern of struts forming a plurality of inner apexes situated substantially within a plane that contains the plurality of the inner apexes. There is a second pattern of struts forming a plurality of outer apexes that are situated substantially within the plane containing the inner apexes. Each outer apex has at least one strut in common with an adjacent inner apex. There is also described a method of forming a non-planar three dimensional structure by patterning a planar sheet of material to form an article having a plurality of inner apexes, a plurality of outer apexes with a common curvilinear strut between an inner apex and an adjacent outer apex. Thereafter, everting the article into a non-planar three dimensional structure with the inner apexes at one end of the structure and the outer apexes at another end of the structure.
    Type: Application
    Filed: August 30, 2012
    Publication date: February 28, 2013
    Inventors: Tom Duerig, Christine Trepanier, Lot Vien, Dieter Stoeckel, Payman Saffari
  • Publication number: 20070179596
    Abstract: Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned.
    Type: Application
    Filed: April 17, 2007
    Publication date: August 2, 2007
    Inventors: Luis Davila, David Lentz, Gerard Llanos, Jorge Mendez, Pallassana Narayanan, Alan Pelton, Mark Roller, Karl Scheidt, Angelo Scopelianos, William Shaw, James Silver, John Spaltro, Christine Trepanier, David Wilson
  • Publication number: 20070179595
    Abstract: Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned.
    Type: Application
    Filed: April 17, 2007
    Publication date: August 2, 2007
    Inventors: Luis Davila, David Lentz, Gerard Llanos, Jorge Mendez, Pallassana Narayanan, Alan Pelton, Mark Roller, Karl Scheidt, Angelo Scopelianos, William Shaw, James Silver, John Spaltro, Christine Trepanier, David Wilson
  • Publication number: 20070179597
    Abstract: Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned.
    Type: Application
    Filed: April 17, 2007
    Publication date: August 2, 2007
    Inventors: Luis Davila, David Lentz, Gerard Llanos, Jorge Mendez, Pallassana Narayanan, Alan Pelton, Mark Roller, Karl Scheidt, Angelo Scopelianos, William Shaw, James Silver, John Spaltro, Christine Trepanier, David Wilson
  • Publication number: 20060222756
    Abstract: Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned.
    Type: Application
    Filed: May 19, 2006
    Publication date: October 5, 2006
    Applicant: Cordis Corporation
    Inventors: Luis Davila, David Lentz, Gerard Llanos, Jorge Mendez, Pallassana Narayanan, Alan Pelton, Mark Roller, Karl Scheidt, Angelo Scopelianos, William Shaw, James Silver, John Spaltro, Christine Trepanier, David Wilson
  • Patent number: 7056550
    Abstract: Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: June 6, 2006
    Assignee: Ethicon, Inc. - USA
    Inventors: Luis A. Davila, David Christian Lentz, Gerard H. Llanos, Jorge Orlando Mendez, Pallassana V. Narayanan, Alan Roy Pelton, Mark B. Roller, Karl K. Scheidt, Angelo George Scopelianos, William Douglas Shaw, Jr., James H. Silver, John Spaltro, Christine Trepanier, David J. Wilson
  • Patent number: 6863685
    Abstract: A stent or other intraluminal medical device having markers formed from housings integral with the stent and marker inserts having a higher radiopacity than the stent provides for more precise placement and post-procedural visualization in a vessel, by increasing the radiopacity of the stent under X-ray fluoroscopy. The housings are formed integral to the stent and the marker inserts are made from a material close in the galvanic series to the stent material and sized to substantially minimize the effect of galvanic corrosion.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: March 8, 2005
    Assignee: Cordis Corporation
    Inventors: Luis A. Davila, Jorge Orlando Mendez, Alan R. Pelton, Karl K. Scheidt, William D. Shaw, Jr., James Silver, Christine Trepanier, David J. Wilson
  • Publication number: 20040117001
    Abstract: A medical device which includes a component formed from an alloy which contains at least about 40% Ni by weight. The alloy in a 10 nm deep surface region of the component contains not more than about 10% Ni by weight. The Ni content in that surface region can be reduced by polishing and oxidizing treatment such as (a) exposure to superheated steam, or (b) immersion in a chemical solution, or (c) an electrochemical treatment, using the device as the anode in a solution bath with a current running therethrough.
    Type: Application
    Filed: October 10, 2003
    Publication date: June 17, 2004
    Inventors: Alan R. Pelton, Christine Trepanier
  • Publication number: 20040102758
    Abstract: Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned.
    Type: Application
    Filed: August 7, 2003
    Publication date: May 27, 2004
    Inventors: Luis A. Davila, David Christian Lentz, Gerard H. Llanos, Jorge Orlando Mendez, Pallassana V. Narayanan, Alan Roy Pelton, Mark B. Roller, Karl K. Scheidt, Angelo George Scopelianos, William Douglas Shaw, James H. Silver, John Spaltro, Christine Trepanier, David J. Wilson
  • Publication number: 20020143386
    Abstract: A stent or other intraluminal medical device having markers formed from housings integral with the stent and marker inserts having a higher radiopacity than the stent provides for more precise placement and post-procedural visualization in a vessel, by increasing the radiopacity of the stent under X-ray fluoroscopy. The housings are formed integral to the stent and the marker inserts are made from a material close in the galvanic series to the stent material and sized to substantially minimize the effect of galvanic corrosion.
    Type: Application
    Filed: June 19, 2001
    Publication date: October 3, 2002
    Inventors: Luis A. Davila, Jorge Mendez, Alan R. Pelton, Karl K. Scheidt, William D. Shaw, James Silver, Christine Trepanier, David J. Wilson
  • Publication number: 20020111590
    Abstract: Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned.
    Type: Application
    Filed: September 25, 2001
    Publication date: August 15, 2002
    Inventors: Luis A. Davila, David Christian Lentz, Gerard H. Llanos, Jorge Orlando Mendez, Pallassana V. Narayanan, Alan Roy Pelton, Mark B. Roller, Karl K. Scheidt, Angelo George Scopelianos, William Douglas Shaw, James H. Silver, John Spaltro, Christine Trepanier, David J. Wilson
  • Publication number: 20020092583
    Abstract: A medical device which includes a component formed from an alloy which contains at least about 40% Ni by weight. The alloy in a 10 nm deep surface region of the component contains not more than about 10% Ni by weight. The Ni content in that surface region can be reduced by polishing and oxidizing treatment such as (a) exposure to superheated steam, or (b) immersion in a chemical solution, or (c) an electrochemical treatment, using the device as the anode in a solution bath with a current running therethrough.
    Type: Application
    Filed: January 16, 2001
    Publication date: July 18, 2002
    Inventors: Alan R. Pelton, Christine Trepanier