Patents by Inventor Christoph Gruber

Christoph Gruber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240041990
    Abstract: The present invention relates to composition comprising a clustered, regularly interspaced, short palindromic repeats (CRISPR) system comprising i) at least one CRISPR-associated protein 13 (Cas13) or a nucleotide sequence encoding said Cas13 protein fused with at least one nuclear localization signal (NLS) fused to at least one nuclear export sequence (NES) and ii) at least one guide RNA (gRNA) or a nucleotide sequence encoding said gRNA capable of hybridizing with one or more target RNA molecules.
    Type: Application
    Filed: December 21, 2021
    Publication date: February 8, 2024
    Inventors: Christoph GRUBER, Dong-Jiunn Jeffery TRUONG, Florian GIESERT, Wolfgang WURST
  • Publication number: 20230328911
    Abstract: An inverter system for a drive train of a motor vehicle is disposed in a multi-part housing. The inverter system includes a control board which can be connected via control cable connections to control lines, DC link capacitors, power semiconductors, control units, and current transformers. The housing is formed with an electronics level, a power level and a connection level. The interior of the housing has a plurality of zones in which different conditions prevail with regard to temperature and/or EMC shielding.
    Type: Application
    Filed: August 18, 2021
    Publication date: October 12, 2023
    Inventors: Gerald Helwich, Christoph Gruber
  • Publication number: 20200111896
    Abstract: A method of forming recess for a trench gate electrode includes forming a trench in a first major surface of a semiconductor substrate, the trench having a base and a side wall extending from the base to the first major surface, forming a first insulating layer on the base and the side wall of the trench, inserting a first conductive material into the trench that at least partially covers the first insulation layer to form a field plate in a lower portion of the trench, applying a second insulating layer to the first major surface and the trench such that the second insulating layer fills the trench and covers the conductive material, removing the second insulating layer from the first major surface and partially removing the second insulating layer from the trench by etching and forming a recess for a gate electrode in the second insulating layer in the trench.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 9, 2020
    Inventors: Thomas Feil, Jyotshna Bhandari, Christoph Gruber, Heimo Hofer, Ravi Keshav Joshi, Olaf Kuehn, Juergen Steinbrenner
  • Patent number: 10403728
    Abstract: A semiconductor device includes needle-shaped trenches in a semiconductor substrate, each of which includes a field electrode electrically insulated from the semiconductor substrate. Source doping regions and body doping regions of a transistor arrangement are formed in the semiconductor substrate between neighboring ones of the needle-shaped trenches. Gate trenches extend through the source doping regions and the body doping regions. The device further includes a first insulation layer above the semiconductor substrate, an etch stop layer on the first insulation layer, a second insulation layer on the etch stop layer, and an electrically conductive material on the second insulation layer and which contacts the field electrodes, source doping regions and body doping regions through openings which extend through the second insulation layer, etch stop layer and first insulation layer.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: September 3, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Michael Hutzler, Christoph Gruber
  • Publication number: 20190145292
    Abstract: An oil supply system for an internal combustion engine, comprising a lubricating oil circuit in which a first oil pressure generating device, a first device for oil temperature control, and a second device for oil temperature control are provided, wherein the two devices for oil temperature control are arranged in two arms of the lubricating oil circuit connected in parallel and wherein the first oil pressure generating device is arranged in the flow direction upstream of the branch to the two arms leading to the two devices for oil temperature control.
    Type: Application
    Filed: March 21, 2017
    Publication date: May 16, 2019
    Inventor: Christoph Gruber
  • Publication number: 20190140059
    Abstract: A semiconductor device includes needle-shaped trenches in a semiconductor substrate, each of which includes a field electrode electrically insulated from the semiconductor substrate. Source doping regions and body doping regions of a transistor arrangement are formed in the semiconductor substrate between neighboring ones of the needle-shaped trenches. Gate trenches extend through the source doping regions and the body doping regions. The device further includes a first insulation layer above the semiconductor substrate, an etch stop layer on the first insulation layer, a second insulation layer on the etch stop layer, and an electrically conductive material on the second insulation layer and which contacts the field electrodes, source doping regions and body doping regions through openings which extend through the second insulation layer, etch stop layer and first insulation layer.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 9, 2019
    Inventors: Michael Hutzler, Christoph Gruber
  • Patent number: 10233800
    Abstract: A method for operating a combustion engine having a crankcase, a piston group and a crankshaft, wherein the crankcase has an oil reservoir and an operational amount of lubricating oil is provided, wherein i) a partial amount of the lubricating oil is continuously discharged from the crankshaft and ii) a refill amount of new lubricating oil is continuously supplied, so that the operational amount of lubricating oil remains essentially the same; as well as a combustion engine for carrying out the method.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: March 19, 2019
    Assignee: IFT GMBH
    Inventor: Christoph Gruber
  • Patent number: 10199468
    Abstract: A method for forming a semiconductor device includes forming a first insulation layer on a semiconductor substrate and forming a structured etch stop layer. Further, the method includes depositing a second insulation layer after forming the structured etch stop layer and forming a structured mask layer on the second insulation layer. Additionally, the method includes etching portions of the second insulation layer uncovered by the structured mask layer and portions of the first insulation layer uncovered by the structured etch stop layer to uncover at least one of a portion of the semiconductor substrate and an electrode located within a trench. Further, the method includes depositing electrically conductive material to form an electrical contact to at least one of the uncovered electrode and the uncovered portion of the semiconductor substrate.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: February 5, 2019
    Assignee: Infineon Technologies Austra AG
    Inventors: Michael Hutzler, Christoph Gruber
  • Publication number: 20170330941
    Abstract: A method for forming a semiconductor device includes forming a first insulation layer on a semiconductor substrate and forming a structured etch stop layer. Further, the method includes depositing a second insulation layer after forming the structured etch stop layer and forming a structured mask layer on the second insulation layer. Additionally, the method includes etching portions of the second insulation layer uncovered by the structured mask layer and portions of the first insulation layer uncovered by the structured etch stop layer to uncover at least one of a portion of the semiconductor substrate and an electrode located within a trench. Further, the method includes depositing electrically conductive material to form an electrical contact to at least one of the uncovered electrode and the uncovered portion of the semiconductor substrate.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 16, 2017
    Inventors: Michael Hutzler, Christoph Gruber
  • Patent number: 9768273
    Abstract: In one aspect, a method of forming a trench in a semiconductor material includes forming a first dielectric layer on a semiconductor substrate. The first dielectric layer includes first openings. An epitaxial layer is grown on the semiconductor substrate by an epitaxial lateral overgrowth process. The first openings are filled by the epitaxial layer and the epitaxial layer is grown onto adjacent portions of the first dielectric layer so that part of the first dielectric layer is uncovered by the epitaxial layer and a gap forms between opposing sidewalls of the epitaxial layer over the part of the first dielectric layer that is uncovered by the epitaxial layer. The gap defines a first trench in the epitaxial layer that extends to the first dielectric layer.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: September 19, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Ravi Joshi, Johannes Baumgartl, Martin Poelzl, Matthias Kuenle, Juergen Steinbrenner, Andreas Haghofer, Christoph Gruber, Georg Ehrentraut
  • Publication number: 20170110331
    Abstract: A method for forming a semiconductor device includes etching, in a masked etching process, through a layer stack located on a surface of a semiconductor substrate to expose the semiconductor substrate at unmasked regions of the layer stack. The method further includes etching, in a selective etching process, at least a first layer of the layer stack located adjacently to the semiconductor substrate. A second layer of the layer stack is less etched or non-etched compared to the selective etching of the first layer of the layer stack, such that the first layer of the layer stack is laterally etched back between the semiconductor substrate and the second layer of the layer stack. The method further includes growing semiconductor material on regions of the surface of the semiconductor substrate exposed after the selective etching process.
    Type: Application
    Filed: October 14, 2016
    Publication date: April 20, 2017
    Inventors: Ravi Keshav Joshi, Johannes Baumgartl, Georg Ehrentraut, Petra Fischer, Richard Gaisberger, Christoph Gruber, Martin Poelzl, Juergen Steinbrenner
  • Publication number: 20170005091
    Abstract: A semiconductor device includes a semiconductor laminar structure arranged on a semiconductor substrate. The semiconductor laminar structure includes a first doping region of a field effect transistor structure and at least a part of a body region of the field effect transistor structure. The body region has a first conductivity type and the first doping region has a second conductivity type. The semiconductor device further includes an electrically conductive contact structure providing an electrical contact to the first doping region of the field effect transistor structure and to the body region of the field effect transistor structure at one or more sidewalls of the semiconductor laminar structure.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 5, 2017
    Inventors: Ravi Keshav Joshi, Johannes Baumgartl, Christoph Gruber, Andreas Haghofer, Martin Poelzl, Juergen Steinbrenner
  • Publication number: 20160376948
    Abstract: A method for operating a combustion engine having a crankcase, a piston group and a crankshaft, wherein the crankcase has an oil reservoir and an operational amount of lubricating oil is provided, wherein i) a partial amount of the lubricating oil is continuously discharged from the crankshaft and ii) a refill amount of new lubricating oil is continuously supplied, so that the operational amount of lubricating oil remains essentially the same; as well as a combustion engine for carrying out the method.
    Type: Application
    Filed: June 22, 2016
    Publication date: December 29, 2016
    Inventor: Christoph Gruber
  • Publication number: 20160308028
    Abstract: In one aspect, a method of forming a trench in a semiconductor material includes forming a first dielectric layer on a semiconductor substrate. The first dielectric layer includes first openings. An epitaxial layer is grown on the semiconductor substrate by an epitaxial lateral overgrowth process. The first openings are filled by the epitaxial layer and the epitaxial layer is grown onto adjacent portions of the first dielectric layer so that part of the first dielectric layer is uncovered by the epitaxial layer and a gap forms between opposing sidewalls of the epitaxial layer over the part of the first dielectric layer that is uncovered by the epitaxial layer. The gap defines a first trench in the epitaxial layer that extends to the first dielectric layer.
    Type: Application
    Filed: June 20, 2016
    Publication date: October 20, 2016
    Inventors: Ravi Joshi, Johannes Baumgartl, Martin Poelzl, Matthias Kuenle, Juergen Steinbrenner, Andreas Haghofer, Christoph Gruber, Georg Ehrentraut
  • Patent number: 9379196
    Abstract: In one aspect, a method of forming a trench in a semiconductor material includes forming a first dielectric layer on a semiconductor substrate. The first dielectric layer includes first openings. An epitaxial layer is grown on the semiconductor substrate by an epitaxial lateral overgrowth process. The first openings are filled by the epitaxial layer and the epitaxial layer is grown onto adjacent portions of the first dielectric layer so that part of the first dielectric layer is uncovered by the epitaxial layer and a gap forms between opposing sidewalls of the epitaxial layer over the part of the first dielectric layer that is uncovered by the epitaxial layer. The gap defines a first trench in the epitaxial layer that extends to the first dielectric layer.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: June 28, 2016
    Assignee: Infineon Technologies Austria AG
    Inventors: Ravi Joshi, Johannes Baumgartl, Martin Poelzl, Matthias Kuenle, Juergen Steinbrenner, Andreas Haghofer, Christoph Gruber, Georg Ehrentraut
  • Patent number: 9272236
    Abstract: A filtration system for separating accompanying substances, present in liquid, droplet or mist form, from a gaseous material stream, comprising a housing, in which there is arranged a filter insert, wherein the housing has an inlet and an outlet for said material stream, wherein the filter insert comprises at least two filter layers, wherein one boundary surface of the first filter layer is essentially in parallel with a boundary surface of the second filter layer, wherein at least one boundary surface forms a barrier for said material stream.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 1, 2016
    Assignee: IFT GMBH
    Inventors: Christoph Gruber, Christian Waldner
  • Publication number: 20150258479
    Abstract: A filtration system for separating accompanying substances, present in liquid, droplet or mist form, from a gaseous material stream, comprising a housing, in which there is arranged a filter insert, wherein the housing has an inlet and an outlet for said material stream, wherein the filter insert comprises at least two filter layers, wherein one boundary surface of the first filter layer is essentially in parallel with a boundary surface of the second filter layer, wherein at least one boundary surface forms a barrier for said material stream.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 17, 2015
    Applicant: IFT GmbH
    Inventors: Christoph Gruber, Christian Waldner
  • Publication number: 20150221735
    Abstract: In one aspect, a method of forming a trench in a semiconductor material includes forming a first dielectric layer on a semiconductor substrate. The first dielectric layer includes first openings. An epitaxial layer is grown on the semiconductor substrate by an epitaxial lateral overgrowth process. The first openings are filled by the epitaxial layer and the epitaxial layer is grown onto adjacent portions of the first dielectric layer so that part of the first dielectric layer is uncovered by the epitaxial layer and a gap forms between opposing sidewalls of the epitaxial layer over the part of the first dielectric layer that is uncovered by the epitaxial layer. The gap defines a first trench in the epitaxial layer that extends to the first dielectric layer.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 6, 2015
    Inventors: Ravi Joshi, Johannes Baumgartl, Martin Poelzl, Matthias Kuenle, Juergen Steinbrenner, Andreas Haghofer, Christoph Gruber, Georg Ehrentraut