Patents by Inventor Christoph Harder

Christoph Harder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8908729
    Abstract: Semiconductor laser diodes, particularly broad area single emitter (BASE) laser diodes of high light output powers are commonly used in opto-electronics. Light output power and stability of such laser diodes are of crucial interest and any degradation during normal use is a significant disadvantage. The present invention concerns an improved design of such laser diodes, the improvement in particular significantly minimizing or avoiding (front) end section degradation at very high light output powers by controlling the current flow in the laser diode in a defined way. This is achieved by controlling the carrier injection, i.e. the injection current, into the laser diode in a novel way by creating single current injection points along the laser diode's longitudinal extension, e.g. along the waveguide. Further, the supply current/voltage of each single or group of current injection point(s) may be separately regulated, further enhancing controllability of the carrier injection.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: December 9, 2014
    Assignee: II-VI Laser Enterprise GmbH
    Inventors: Christoph Harder, Abram Jakubowicz, Nicolai Matuschek, Joerg Troger, Michael Schwarz
  • Patent number: 8111727
    Abstract: Semiconductor laser diodes, particularly broad area single emitter (BASE) laser diodes of high light output power, are commonly used in opto-electronics. Light output power and stability of such laser diodes are of crucial interest and any degradation during normal use is a significant disadvantage. The present invention concerns an improved design of such laser diodes, the improvement in particular significantly minimizing or avoiding degradation of such laser diodes at very high light output powers by controlling the current flow in the laser diode in a defined way. The minimization or avoidance of (front) end section degradation of such laser diodes significantly increases long-term stability compared to prior art designs. This is achieved by controlling the carrier injection into the laser diode in the vicinity of its facets in such a way that abrupt injection current peaks are avoided.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: February 7, 2012
    Assignee: Oclaro Technology Limited
    Inventors: Christoph Harder, Abram Jakubowicz, Nicolai Matuschek, Joerg Troger, Michael Schwarz
  • Publication number: 20100220762
    Abstract: Semiconductor laser diodes, particularly broad area single emitter (BASE) laser diodes of high light output power, are commonly used in opto-electronics. Light output power and stability of such laser diodes are of crucial interest and any degradation during normal use is a significant disadvantage. The present invention concerns an improved design of such laser diodes, the improvement in particular significantly minimizing or avoiding degradation of such laser diodes at very high light output powers by controlling the current flow in the laser diode in a defined way. The minimization or avoidance of (front) end section degradation of such laser diodes significantly increases long-term stability compared to prior art designs. This is achieved by controlling the carrier injection into the laser diode in the vicinity of its facets in such a way that abrupt injection current peaks are avoided.
    Type: Application
    Filed: June 28, 2006
    Publication date: September 2, 2010
    Applicant: BOOKHAM TECHNOLOGY PLC
    Inventors: Christoph Harder, Abram Jakubowicz, Nicolai Matuschek, Joerg Troger, Michael Schwarz
  • Publication number: 20100189152
    Abstract: Semiconductor laser diodes, particularly broad area single emitter (BASE) laser diodes of high light output powers are commonly used in opto-electronics. Light output power and stability of such laser diodes are of crucial interest and any degradation during normal use is a significant disadvantage. The present invention concerns an improved design of such laser diodes, the improvement in particular significantly minimizing or avoiding (front) end section degradation at very high light output powers by controlling the current flow in the laser diode in a defined way. This is achieved by controlling the carrier injection, i.e. the injection current, into the laser diode in a novel way by creating single current injection points along the laser diode's longitudinal extension, e.g. along the waveguide. Further, the supply current/voltage of each single or group of current injection point(s) may be separately regulated, further enhancing controllability of the carrier injection.
    Type: Application
    Filed: June 28, 2006
    Publication date: July 29, 2010
    Applicant: BOOKHAM TECHNOLOGY PLC
    Inventors: Christoph Harder, Abram Jakubowicz, Nicolai Matuschek, Joerg Troger, Michael Schwarz
  • Patent number: 7218659
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability compared to prior art designs. This is achieved by establishing one or two “unpumped end sections” of the laser diode. One preferred way of providing such an unpumped end section at one of the laser facets (10, 12) is to insert an isolation layer (11, 13) of predetermined position, size, and shape between the laser diode's semiconductor material and the usually existing metallization (6).
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: May 15, 2007
    Assignee: Bookham Technology plc
    Inventors: Berthold Schmidt, Susanne Pawlik, Achim Thies, Christoph Harder
  • Publication number: 20050030998
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability compared to prior art designs. This is achieved by establishing one or two “unpumped end sections” of the laser diode. One preferred way of providing such an unpumped end section at one of the laser facets (10, 12) is to insert an isolation layer (11, 13) of predetermined position, size, and shape between the laser diode's semiconductor material and the usually existing metallization (6).
    Type: Application
    Filed: July 14, 2004
    Publication date: February 10, 2005
    Inventors: Berthold Schmidt, Susanne Pawlik, Achim Thies, Christoph Harder
  • Patent number: 6782024
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability compared to prior art designs. This is achieved by establishing one or two “unpumped end sections” of the laser diode. One preferred way of providing such an unpumped end section at one of the laser facets (10, 12) is to insert an isolation layer (11, 13) of predetermined position, size, and shape between the laser diode's semiconductor material and the usually existing metallization (6).
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: August 24, 2004
    Assignee: Bookham Technology plc
    Inventors: Berthold Schmidt, Susanne Pawlik, Achim Thies, Christoph Harder
  • Publication number: 20020167982
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability compared to prior art designs. This is achieved by establishing one or two “unpumped end sections” of the laser diode. One preferred way of providing such an unpumped end section at one of the laser facets (10, 12) is to insert an isolation layer (11, 13) of predetermined position, size, and shape between the laser diode's semiconductor material and the usually existing metallization (6).
    Type: Application
    Filed: May 10, 2001
    Publication date: November 14, 2002
    Inventors: Berthold N. Schmidt, Susanne Pawlik, Achim Thies, Christoph Harder
  • Patent number: 6204560
    Abstract: As will be described in more detail hereinafter, there is disclosed herein a titanium nitride diffusion barrier layer and associated method for use in non-silicon semiconductor technologies. In one aspect of the invention, a semiconductor device includes a non-silicon active surface. The improvement comprises an ohmic contact serving to form an external electrical connection to the non-silicon active surface in which the ohmic contact includes at least one layer consisting essentially of titanium nitride. In another aspect of the invention, a semiconductor ridge waveguide laser is disclosed which includes a semiconductor substrate and an active layer disposed on the substrate. A cladding layer is supported partially on the substrate and partially on the active layer. The cladding layer includes a ridge portion disposed in a confronting relationship with the active region.
    Type: Grant
    Filed: April 20, 1998
    Date of Patent: March 20, 2001
    Assignee: Uniphase Laser Enterprise AG
    Inventors: Andreas Daetwyler, Urs Deutsch, Christoph Harder, Wilhelm Heuberger, Eberhard Latta, Abram Jakubowicz, Albertus Oosenbrug, William Patrick, Peter Roentgen, Erica Williams
  • Patent number: 5463705
    Abstract: Optical waveguide isolator (121) for monolithic integration with semiconductor light emitting diodes such as Fabry-Perot or ring laser diodes. The present optical isolator (121), with optical input port (95) and output pod (96), comprises a branching waveguide coupler (56). This branching waveguide coupler (56) has a waveguide stem (60) splitted at one end into two waveguide branches (57, 58) such that a light wave fed via said input pod (95) into a first of these branches (58), is guided via the waveguide stem (60) and the output pod (96) out of the device. A light wave fed to the isolator's output pod (96) is guided along the stem (60) and coupled into the second waveguide branch (57).
    Type: Grant
    Filed: August 10, 1994
    Date of Patent: October 31, 1995
    Assignee: International Business Machines Corporation
    Inventors: Rolf Clauberg, Christoph Harder, Christan Heusch, Heinz Jaeckel
  • Patent number: 5331655
    Abstract: Laser diode with independent electronic and optical confinement, referred to as decoupled confinement, comprising an active region, i.e. an active layer, a single quantum well layer or a multi-quantum well layer, embedded in a carrier confinement structure providing for an energy barrier at least on one side of the active region. This energy barrier reduces carrier leakage out of the active region. The carrier confinement structure is embedded in an optical confinement structure which guides the optical light wave. The inventive laser diode is characterized in that the height of the energy barrier confining the carriers, and the refractive index step providing for optical waveguiding of the light wave are decoupled.
    Type: Grant
    Filed: April 14, 1993
    Date of Patent: July 19, 1994
    Assignee: International Business Machines Corporation
    Inventors: Christoph Harder, Stefan Hausser, Heinz Meier
  • Patent number: 5305340
    Abstract: A protection configuration for a semiconductor ridge waveguide laser structure is disclosed wherein layers of protective metal in the form of walls, is applied on each side of the ridge element of the ridged layer of the laser structure. The laser structure is then bonded to a mounting plate in a junction side down orientation by solder or a junction side up orientation by wire bonding. The metal layer may be composed of gold.
    Type: Grant
    Filed: December 16, 1992
    Date of Patent: April 19, 1994
    Assignee: International Business Machines Corporation
    Inventors: Arsam Antreasyan, Myra N. Boenke, Greg Costrini, Kurt R. Grebe, Christoph Harder, Peter D. Hoh
  • Patent number: 5284792
    Abstract: A method for full-wafer processing of laser diodes with cleaved facets combining the advantages of full-wafer processing, to date known from processing lasers with etched facets, with the advantages of cleaved facets. The steps being: defining the position of the facets to be cleaved by scribing marks into the top surface of a laser structure comprising epitaxially grown layers, these scribed marks being perpendicular to the optical axis of the lasers to be made, the scribed marks being parallel, their distance (l.sub.c) defining the length of the laser cavities and the distance (l.sub.
    Type: Grant
    Filed: June 11, 1993
    Date of Patent: February 8, 1994
    Assignee: International Business Machines Corporation
    Inventors: Theodor Forster, Christoph Harder, Albertus Oosenbrug, Gary W. Rubloff
  • Patent number: 4562569
    Abstract: A two-segment contact buried heterostructure (BH) laser is pumped by a current applied to its absorber contact from a source of high impedance on the order of 100K.OMEGA. or more. The parasitic resistance between the absorber contact and the gain contact is high on the order of 10K.OMEGA.. For a given absorber (bias) current the laser exhibits a relatively wide hysteresis on the order of 1 mA or more in the light vs. gain contact current. Such a laser is highly useful as a bistable optical element. The laser is also bistable with selected pump gain and absorber currents to exhibit a wide hysteresis of voltage across the absorber contact vs. relative amounts of light which is reflected back to the laser as feedback. The laser serve both as a light source and as a detector for reading out binary information stored as light reflective spots on a medium, e.g. a video disk.
    Type: Grant
    Filed: January 5, 1982
    Date of Patent: December 31, 1985
    Assignee: California Institute of Technology
    Inventors: Amnon Yariv, Christoph Harder, Kam-Yin Lau