Patents by Inventor Christoph Helmut Bathe

Christoph Helmut Bathe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11469071
    Abstract: The rotatable anode of a rotating anode X-ray source has demanding requirements placed upon it. For example, it may rotate at a frequency as high as 200 Hz. X-ray emission is stimulated by applying a large voltage to the cathode, causing electrons to collide with the focal track. The focal spot generated at the electron impact position may have a peak temperature between 2000° C. and 3000° C. The constant rotation of the rotating anode protects the focal track to some extent, however the average temperature of the focal track immediately following a CT acquisition protocol may still be around 1500° C. Therefore, demanding requirements are placed upon the design of the rotating anode. The present application proposes a multi-layer coating for the target region of a rotating X-ray anode which improves mechanical resilience and thermal resilience, whilst reducing the amount of expensive refractory metals required.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: October 11, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rolf Karl Otto Behling, Christoph Helmut Bathe, Wolfgang Chrost
  • Publication number: 20200388461
    Abstract: The rotatable anode of a rotating anode X-ray source has demanding requirements placed upon it. For example, it may rotate at a frequency as high as 200 Hz. X-ray emission is stimulated by applying a large voltage to the cathode, causing electrons to collide with the focal track. The focal spot generated at the electron impact position may have a peak temperature between 2000° C. and 3000° C. The constant rotation of the rotating anode protects the focal track to some extent, however the average temperature of the focal track immediately following a CT acquisition protocol may still be around 1500° C. Therefore, demanding requirements are placed upon the design of the rotating anode. The present application proposes a multi-layer coating for the target region of a rotating X-ray anode which improves mechanical resilience and thermal resilience, whilst reducing the amount of expensive refractory metals required.
    Type: Application
    Filed: December 11, 2018
    Publication date: December 10, 2020
    Inventors: ROLF KARL OTTO BEHLING, CHRISTOPH HELMUT BATHE, WOLFGANG CHROST
  • Publication number: 20180182591
    Abstract: In order to provide a mount of an anode disk to a rotating shaft that is suitable for increased thermal loads on the anode disk, a rotating anode assembly (10) is provided that comprises an anode disk (12), a rotating shaft (14), and an anode disk support (16). The anode disk is concentrically mounted to a rotating axis (18) of the rotating shaft via the anode disk support, and the anode disk support comprises a first support (20) with a first circular axial support surface (22) that is provided at the rotating shaft in a concentric manner with the rotating axis. Further, the anode disk support comprises a second support (24) with a second axial support surface (26) that is at least temporarily attached to the rotating shaft for urging the anode disk against the first support surface in an axial clamping direction. Still further, the first support is provided as a radially flexible support (28).
    Type: Application
    Filed: February 22, 2018
    Publication date: June 28, 2018
    Inventors: CHRISTOPH HELMUT BATHE, ULRICH HERMANN HOVE
  • Patent number: 9934931
    Abstract: The present invention relates to mounting of an anode disk. In order to provide a mount of an anode disk to a rotating shaft that is suitable for increased thermal loads on the anode disk, a rotating anode assembly (10) is provided that comprises an anode disk (12), a rotating shaft (14), and an anode disk support (16). The anode disk is concentrically mounted to a rotating axis (18) of the rotating shaft via the anode disk support, and the anode disk support comprises a first support (20) with a first circular axial support surface (22) that is provided at the rotating shaft in a concentric manner with the rotating axis. Further, the anode disk support comprises a second support (24) with a second axial support surface (26) that is at least temporarily attached to the rotating shaft for urging the anode disk against the first support surface in an axial clamping direction. Still further, the first support is provided as a radially flexible support (28).
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: April 3, 2018
    Assignee: KONINKLIKE PHILIPS N.V.
    Inventors: Christoph Helmut Bathe, Ulrich Hermann Hove
  • Patent number: 9659739
    Abstract: An apparatus (210) and method for total or partial blanking of an electron beam (e) during a jump between the 2 or more positions of a dynamic focal spot (FP) movement in circumferential direction of the electron beam impinging on the focal track (FPTR) of a rotating target disk (230) of a X-ray tube (110). Alternatively the focal spot size can be increased during this short time interval. Overheating of the anode at the focal spot can be prevented.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: May 23, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Helmut Bathe, Thorben Repenning
  • Publication number: 20160163498
    Abstract: The present invention relates to mounting of an anode disk. In order to provide a mount of an anode disk to a rotating shaft that is suitable for increased thermal loads on the anode disk, a rotating anode assembly (10) is provided that comprises an anode disk (12), a rotating shaft (14), and an anode disk support (16). The anode disk is concentrically mounted to a rotating axis (18) of the rotating shaft via the anode disk support, and the anode disk support comprises a first support (20) with a first circular axial support surface (22) that is provided at the rotating shaft in a concentric manner with the rotating axis. Further, the anode disk support comprises a second support (24) with a second axial support surface (26) that is at least temporarily attached to the rotating shaft for urging the anode disk against the first support surface in an axial clamping direction. Still further, the first support is provided as a radially flexible support (28).
    Type: Application
    Filed: June 20, 2014
    Publication date: June 9, 2016
    Inventors: CHRISTOPH HELMUT BATHE, ULRICH HERMANN HOVE
  • Publication number: 20150098548
    Abstract: An apparatus (210) and method for total or partial blanking of an electron beam (e) during a jump between the 2 or more positions of a dynamic focal spot (FP) movement in circumferential direction of the electron beam impinging on the focal track (FPTR) of a rotating target disk (230) of a X-ray tube (110). Alternatively the focal spot size can be increased during this short time interval. Overheating of the anode at the focal spot can be prevented.
    Type: Application
    Filed: May 17, 2013
    Publication date: April 9, 2015
    Applicant: KONINKLIJKE PHLIPS N.V.
    Inventors: Christoph Helmut Bathe, Thorben Repenning
  • Patent number: 7050542
    Abstract: The invention relates to a device for generating X-rays (41). The device comprises a source (5) for generating an electron beam (35), and a carrier (7) which is rotatable about an axis of rotation (15) and which is provided with a material (9) which generates the X-rays as a result of the incidence of the electron beam thereon. The device further comprises a heat absorbing member (45) which is arranged between the source and the carrier to catch electrons, which are scattered back from an impingement position (39) of the electron beam on the carrier, and to absorb a portion of the radiant heat generated by the carrier when heated during operation. The heat absorbing member is in thermal connection with a cooling system (51) of the device.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: May 23, 2006
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Christoph Helmut Bathe, Wolfgang Chrost
  • Patent number: 7046766
    Abstract: A device for generating X-rays includes source for emitting electrons; a carrier having a material that generates X-rays in response to the electrons; and dynamic groove bearing configured to rotate the carrier. The dynamic groove bearing has a portion with grooves. The carrier includes a member that extends away from the carrier to cover at least the portion having the grooves. The carrier and the member are a single piece.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: May 16, 2006
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventor: Christoph Helmut Bathe