Patents by Inventor Christoph Leussler

Christoph Leussler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210141039
    Abstract: The present invention provides a passive radio frequency (RF) shim resonator (144) for field homogenization of an RF field emitted by an RF antenna device (140) of a magnetic resonance (MR) imaging system (110), whereby the passive RF shim resonator (144) has a first resonating capability and a second resonating capability, and the passive RF shim resonator (144) comprises a switching device, whereby the switching device is adapted to switch between the first and the second resonating capability in accordance with a TX- mode and a RX-mode of the RF field emitted by the RF antenna device (140) of the MR imaging system (110). The present invention further provides a patient bed (142) or a patient mattress for use in a magnetic resonance imaging (MRI) system (110), whereby the patient bed (142) or the patient mattress comprises an above passive RF shim resonator (144).
    Type: Application
    Filed: July 12, 2018
    Publication date: May 13, 2021
    Inventors: CHRISTIAN FINDEKLEE, CHRISTOPH LEUSSLER
  • Publication number: 20210116522
    Abstract: The present invention is directed to a RF transmit system (1) for a magnetic resonance examination system where it is intended to provide a solution for the problem of rapidly switching between operation modes of different peak power requirements at good power efficiencies. For this purpose the RF transmit system (1) comprises at least one RF channel (14) wherein the RF channel (14) has an RF amplifier (3), at least two power supply devices (4, 5) wherein each of the power supply devices (4, 5) is configured to supply a voltage to the amplifier (3). The RF transmit system (1) further comprises a DC switch (8) configured to switch the voltage supplied to the amplifier (3) between the power supply devices (4, 5) and a controller (2) configured to switch the voltage based on sensor data.
    Type: Application
    Filed: February 15, 2019
    Publication date: April 22, 2021
    Applicant: Koninklijke Philips N.V.
    Inventors: Peter VERNICKEL, Christoph LEUSSLER, Ingo SCHMALE, Jochen KEUPP
  • Publication number: 20210088607
    Abstract: The present disclosure relates to a magnetic resonance imaging system (100) comprising a main magnet (104) for generating a main magnetic field within an imaging zone (108); a radio frequency, RF, antenna (114), comprising an RF input terminal (300) and an RF output terminal (302); an RF system for supplying radio-frequency power to the RF input terminal (300) to energize the antenna (114), the antenna (114) being further adapted for 5 picking up magnetic resonance signals (144) from the imaging zone (108); a data acquisition system (126) for receiving the magnetic resonance signals (144) from the RF output terminal (302); wherein the RF input terminal (300) is in galvanic connection to the antenna (114) and the RF output terminal (302) is inductively coupled to the antenna (114)
    Type: Application
    Filed: March 26, 2018
    Publication date: March 25, 2021
    Inventors: CHRISTOPH LEUSSLER, OLIVER LIPS, INGO SCHMALE
  • Publication number: 20210059556
    Abstract: The present disclosure relates to a multi-channel magnetic resonance imaging RF coil (114) with at least four channels and comprising a coil element for each of the channels, the RF coil (114) further comprising for each coil element a socket (300-306) that is electrically coupled to said coil element via a respective first transmission line (209), each socket (300-306) being adapted for receiving a plug for providing an RF signal via the respective first transmission line (209) to the respective coil element, wherein with respect to a predefined RF signal the differences in electrical length between any of the transmission lines is k?/4 where k is an integer and ? is the wavelength of the RF signal.
    Type: Application
    Filed: January 15, 2019
    Publication date: March 4, 2021
    Inventors: CHRISTOPH LEUSSLER, INGO SCHMALE
  • Publication number: 20210063517
    Abstract: The invention provides for a magnetic resonance imaging system (100) comprising a radio frequency system (116, 114, 118) configured for acquiring magnetic resonance data (144) from an imaging zone (108). The radio frequency system is configured for sending and receiving radio frequency signals to acquire the magnetic resonance data, wherein the radio frequency system comprises: an elliptical transmission coil (114) configured for generating a B1+ excitation field within the imaging zone; and an active B1 shim coil (118) configured for being placed within the imaging zone, wherein the radio frequency system is configured for suppling radio frequency power to the active B1 shim coil during the generation of the B1+ excitation field by the elliptical transmission coil, wherein the B1 shim coil is configured for shimming the B1+ excitation field within the imaging zone.
    Type: Application
    Filed: January 10, 2019
    Publication date: March 4, 2021
    Inventors: Christoph Leussler, Peter Vernickel, Oliver Lips, Ingo Schmale, Daniel Wirtz
  • Patent number: 10925539
    Abstract: Patient headphones (50) for use in a medical scanning modality, comprising a frame member (52), two ear cups (54) that, in an operational state of the patient headphones (50), are arranged to be in contact with one of the patient's ears, and a sensor system (60), the sensor system (60) including optical emitters (64) that are configured for directing electromagnetic radiation to a portion of the patient's skin, and optical sensors (68) that are configured for receiving the electromagnetic radiation being returned from the portion of the patient's skin, and for providing an output signal that corresponds to the received electromagnetic radiation, wherein the output signal is indicative of at least one physiological parameter of the patient and serves as a basis for determining the at least one physiological parameter of the patient; —a patient headphones system (48) for use in a medical scanning modality (10), comprising an embodiment of such patient headphones (50) and a data acquisition and analysis unit (76
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: February 23, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Leussler, Daniel Wirtz, Sascha Krueger
  • Patent number: 10918304
    Abstract: A rheology system (202) includes a rheology transducer device (204) for introducing mechanical waves into a subject of interest (120). The rheology transducer device (204) includes multiple transducers (212), a driving device (206) for driving the rheology transducer device (204), a sensor device (208) for sensing mechanical waves at the subject of interest (120), and a control device (210) for receiving input from the sensor device (208) and for controlling the driving device (206) based on the received input from the sensor device (208). An MR rheology system (200) includes the above rheology system (202) and an MR imaging system (110) adapted to control the rheology system (200). A rheology method includes with the rheology system (202), driving the rheology transducer device (204) to introduce mechanical waves into the subject of interest (120), sensing mechanical waves at the subject of interest (120), and performing feedback control.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: February 16, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Daniel Wirtz, Christoph Leussler, Peter Mazurkewitz
  • Patent number: 10918283
    Abstract: An energy depositing therapy system (10), comprising: an energy depositing unit (12) provided for locally depositing energy into a therapy zone (56) of a subject of interest (28) for therapy purposes; a transducer unit (32) that is provided for applying mechanical oscillations to at least a portion of the subject of interest (28); a magnetic resonance imaging system (14) provided for acquiring magnetic resonance imaging data from at least the portion of a subject of interest (28), comprising an image processing unit (24) configured to image the mechanical oscillations; a control unit (40) that is connectable to the energy depositing unit (12), the transducer unit (32) and a magnetic resonance scanner (16) of the magnetic resonance imaging system (14), wherein the control unit (40) is configured to control the depositing of energy in dependence of the processed magnetic resonance imaging data of the portion of the subject of interest (28); a method of controlling an energy depositing therapy system (10) by
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: February 16, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Leussler, Daniel Wirtz, Peter Vernickel, Peter Mazurkewitz
  • Publication number: 20210030306
    Abstract: The invention provides for a medical instrument (100, 400, 500, 600, 900, 1000, 1100. 1200, 1400) comprising a magnetic resonance imaging system. The medical instrument comprises: a radio frequency system (116) configured for sending and receiving radio frequency signals to acquire magnetic resonance imaging data (302). The radio frequency system is configured for connecting to a magnetic resonance imaging antenna (114). The medical instrument further comprises a subject support (120) configured for supporting at least a portion of a subject (118) in an imaging zone (108) of the magnetic resonance imaging system. The subject support comprises an antenna connector (124) configured for connecting to the magnetic resonance imaging antenna. The radiofrequency system is configured for connecting to the magnetic resonance imaging antenna via the antenna connector.
    Type: Application
    Filed: April 2, 2019
    Publication date: February 4, 2021
    Inventors: Christoph Leussler, Daniel Wirtz
  • Patent number: 10895613
    Abstract: The invention concerns to a radio frequency (RF) body coil (2), for use in a Magnetic Resonance Imaging (MRI) system, comprising: an RF shield (6), an RF coil element (8), distantly arranged from the RF shield (6), and at least one distance setting element (10), arranged and designed in such a way that the relative distance (12) between the RF shield (6) and the RF coil element (8) is adjustable via the distance setting element (10) which may lead to locally deforming the RF coil element (8) and/or the RF shield (6). Thus, a radio frequency coil for use in an Magnetic Resonance Imaging system is provided that can be tuned to desired resonances in a comfortable and economic way.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: January 19, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Christian Findeklee, Christoph Leussler
  • Publication number: 20210003646
    Abstract: A multi-channel RF transmit system (1) especially for use in a magnetic resonance examination system comprising, a plurality of RF channels (18, 19) wherein each of the RF channels (18, 19) has an RF amplifier. The multi-channel RF transmit system (1) further comprises a power supply device (2) configured to supply power to the amplifiers (4, 5), a first capacitor bank (6), wherein the first capacitor bank (6) is connected to the power supply device (2) and connected to a first RF amplifier (4), a second capacitor bank (7), wherein the second capacitor bank (7) is connected to the power supply device (2) and connected to a second RF amplifier (5) and a third capacitor bank (8) also connected to the power supply device (2). The third capacitor bank (8) is connected to a DC switch (9), wherein the DC switch (9) is configured to switch the power supplied by the third capacitor bank (8) to the first amplifier (4) or the second amplifier (5).
    Type: Application
    Filed: February 12, 2019
    Publication date: January 7, 2021
    Inventors: PETER VERNICKEL, CHRISTOPH LEUSSLER
  • Patent number: 10877114
    Abstract: The present invention provides a radio frequency (RF) coil (140) for use in a magnetic resonance (MR) imaging system (110), whereby the RF coil (140) comprises a coil PCB (200), multiple conductive elements (202) provided on the coil PCB (200), multiple feeding ports (210) for the excitation of the multiple conductive elements (202), at least one connection port (212), and multiple feeding lines (214) connecting the at least one connection port (212) to the multiple feeding ports (210), whereby the multiple feeding lines (214) are provided as co-planar feeding lines, which are arranged at the coil PCB (200). The present invention further provides a radio frequency (RF) arrangement (142), comprising a RF coil (140) as specified above and a RF shield (124). The present invention also provides a MR imaging system (110) comprising the above RF coil (140) of the above RF arrangement (142).
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: December 29, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Leussler, Ingo Schmale
  • Publication number: 20200355769
    Abstract: The present invention provides a radiation shield (204), in particular for shielding main coils (202) of a magnetic resonance imaging system (110), whereby the radiation shield (204) comprises a cavity (214) for housing at least one main coil (202), whereby the cavity (214) is formed between an inner cylindrical wall (206), an outer cylindrical wall (208), which are arranged essentially concentrically to each other, and two ring-shaped base walls (212), which interconnect the inner cylindrical wall (206) and the outer cylindrical wall (208), wherein at least one out of the inner cylindrical wall (206), the outer cylindrical wall (208), and the two ring-shaped base walls (212) is provided at least partially with an inner layer (216), which faces the cavity (214), and an outer layer (218), wherein the inner layer (216) is a layer comprising carbon fiber reinforced plastic, and the outer layer (218) comprises a metal, which is paramagnetic or diamagnetic.
    Type: Application
    Filed: April 25, 2017
    Publication date: November 12, 2020
    Applicant: Koninklijke N.V.
    Inventors: Thomas Erik AMTHOR, Christoph LEUSSLER
  • Publication number: 20200309875
    Abstract: The present invention is directed to a system comprising a body coil (9) for magnetic resonance imaging and an RF amplifier connected to the body coil (9) for feeding the body coil (9) with an RF signal, wherein the body coil (9) comprises two different ports (21, 22) for feeding the RF signal into the body coil (9), the body coil (9) is provided with a switch for selectively activating only one single port (21, 22) for feeding the RF signal to the body coil (9) at a time, and the two ports (21, 22) are located at different locations of the body coil (9) such that the dependence of the reflected part of the RF signal fed into the body coil (9) from the weight of the examination object (1) to which the body coil (9) is applied is different for the two ports (21, 22).
    Type: Application
    Filed: September 26, 2018
    Publication date: October 1, 2020
    Inventors: PETER VERNICKEL, CHRISTOPH LEUSSLER, INGO SCHMALE, CHRISTIAN FINDEKLEE, OLIVER LIPS
  • Patent number: 10788548
    Abstract: The invention provides for a metal detector (100, 300) with at least a first coil (102) for generating a first magnetic field (108) along a first direction (119). The first coil is a split coil with a first (104) and a second (106) portion (104). A coil power supply (110) separately supplying time varying electrical power to the coil portions. At least one electrical sensor (116, 118) measures electrical data (136) descriptive of the electrical power supplied to at least the first coil portion and the second coil portion. The coils are controlled such as to move a field-free region in a predetermined pattern within a measurement zone. If metal is detected, the pattern is modified for refining localisation of the metallic object.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: September 29, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Christian Findeklee, Christoph Leussler, Peter Vernickel
  • Publication number: 20200284863
    Abstract: The present invention is directed to a magnetic resonance imaging system with motion detection for examination of a patient (53), the magnetic resonance imaging system comprising an RF coil arrangement with an RF coil (4) for transmitting and/or receiving an RF signal for generating a magnetic resonance image wherein the RF coil arrangement is provided with an additional RF sensor (5) for transmitting an RF transmit signal which is adapted for interacting with the tissue (23) of the patient (53) allowing to sense motion signals due to motions of the patient (53) simultaneously to transmitting and/or receiving the RF signal for generating the magnetic resonance image. In this way movements of a patient under examination in an MRI system may be detected in an efficient and reliable way.
    Type: Application
    Filed: November 9, 2018
    Publication date: September 10, 2020
    Inventors: CHRISTOPH LEUSSLER, DANIEL WIRTZ, TIM NIELSEN
  • Patent number: 10749483
    Abstract: An amplifier device (14) is adapted for an antenna-like transducer for MRI applications, especially for an RF coil. The amplifier device (14) includes at least one amplifier channel (16) including: an input connection device (18) for connecting an RF signal source (12); an output connection device (20) for connecting the antenna-like RF transducer; an RF amplifier unit (22); and an impedance matching circuit (24) configured to adapt the coupling of the RF amplifier unit (22) to the actually connected antenna-like RF transducer with regard to an actual load of the amplifier device (14). The load results from the combination of the antenna-like RF transducer and a person or sample interacting with the antenna-like RF transducer. The impedance matching circuit (24) establishes an electric line (34) between the RF amplifier unit (22) and the antenna-like transducer with an adjustable line length.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: August 18, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Leussler, Peter Vernickel
  • Patent number: 10641851
    Abstract: A radio frequency (RF) coil array with multiple RF coil elements for a magnetic resonance examination system is disclosed. The decoupling of RF coil elements involves sets (pairs) of transformers and may also include geometrical overlap of adjacent coils. The mutual coupling between the transformers is adjustable. This provides additional degrees of freedom to fully decouple the RF coil elements from each other.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: May 5, 2020
    Assignee: Koninklijle Philips N.V.
    Inventors: Peter Vernickel, Christian Findelkee, Christoph Leussler
  • Publication number: 20200041587
    Abstract: The invention provides for a magnetic resonance imaging system (100) comprising a main magnet (104) for generating a main magnetic field within an imaging zone (108). The magnetic resonance imaging system further comprises an RF coil (114) for acquiring magnetic resonance data (164) from the imaging zone, wherein the RF coil comprises multiple RF ports (124, 412, 414, 416, 500, 502, 702, 1004, 1006). The RF coil comprises a switch unit (120) for at least one of the multiple RF ports to individually couple or uncouple the at least one of of the multiple RF ports from the RF coil. The magnetic resonance imaging system further comprises a radio-frequency system (125) for supplying radio-frequency power to each of the multiple RF ports and an RF matching detection system (122) for measuring impedance matching data (166) between the radio-frequency system and the RF coil.
    Type: Application
    Filed: October 2, 2017
    Publication date: February 6, 2020
    Inventors: CHRISTIAN FINDEKLKEE, CHRISTOPH LEUSSLER, FALK UHLEMANN, PETER VERNICKEL
  • Patent number: 10534049
    Abstract: A radio frequency volume coil (136; 236) for use in a magnetic resonance examination system (10) includes a radio frequency shield (148; 248), and a pair of radio frequency conductive loop members (138; 238) spaced along a common longitudinal axis (140; 240), a plurality of axially arranged radio frequency conductive members electrically connected to at least one of the radio frequency conductive loop members (138; 238). At least two axially arranged loop coil interconnecting radio frequency conductive members (114; 244) electrically interconnect the radio frequency conductive loop members (138; 238). At least two of the axially arranged shield connecting radio frequency conductive members are axially arranged in an aligned manner at an azimuthal position within a range between azimuthal positions of the at least two loop coil interconnecting members (144; 244), and electrically serve and connect one of the two radio frequency conductive loop members (138; 238) to the radio frequency shield (148; 248).
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: January 14, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Leussler, Christian Findeklee