Patents by Inventor Christoph Manegold

Christoph Manegold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9167973
    Abstract: The portable sensor device is connected with the arterial pressure measurement catheter by way of a pressure hose. The electronic pressure sensor is accommodated in the sensor housing. The analog sensor signal is output to the patient monitor by way of a cable. Aside from the channel for the analog sensor signal, additional channels are provided for communication between sensor device and patient monitor. A bidirectional channel serves for writing to and querying the memory module, in which patient data, such as age, gender, height/weight, etc., can be stored. The three-way cock possesses the settings “M” (measurement operation) and “0” (calibration measurement), in which the contactor is brought into connection with the contact. The switching contact is transmitted to the patient monitor, which thereby automatically recognizes zeroing of the sensor.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: October 27, 2015
    Assignee: PULSION Medical Systems SE
    Inventors: Christian Steiner, Dominik Gutzler, Marcus Veeck, Joerg Scheier, Christoph Manegold
  • Patent number: 8521248
    Abstract: In a fiber-optic probe for intravascular measurements, e.g. oxygen saturation measurements, the fiber-optical core has only two fibers. A single fiber core is also possible. A reinforcement fiber improves stiffness, kink resistance and overall strength of the probe. The reinforcement fiber is arranged essentially parallel to the core fibers. The reinforcement fiber may also be wound around the core in a helical manner thus improving the mechanical properties to an even higher degree. The outside of the sheath is coated with an antithrombogenic coating for reducing the danger of clots forming at the surface. The reinforcement fiber may be made of carbon, metal, ceramics or aramide.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: August 27, 2013
    Assignee: PULSION Medical Systems SE
    Inventors: Marcus Veeck, Oliver Goedje, Robert Herz, Thomas Thalmeier, Christoph Manegold, Matthias Bohn
  • Publication number: 20110224531
    Abstract: The portable sensor device is connected with the arterial pressure measurement catheter by way of a pressure hose. The electronic pressure sensor is accommodated in the sensor housing. The analog sensor signal is output to the patient monitor by way of a cable. Aside from the channel for the analog sensor signal, additional channels are provided for communication between sensor device and patient monitor. A bidirectional channel serves for writing to and querying the memory module, in which patient data, such as age, gender, height/weight, etc., can be stored. The three-way cock possesses the settings “M” (measurement operation) and “0” (calibration measurement), in which the contactor is brought into connection with the contact. The switching contact is transmitted to the patient monitor, which thereby automatically recognizes zeroing of the sensor.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 15, 2011
    Applicant: Pulsion Medical Systems AG
    Inventors: Christian Steiner, Dominik Gutzler, Marcus Veeck, Joerg Scheier, Christoph Manegold
  • Publication number: 20100049019
    Abstract: In a fiber-optic probe for intravascular measurements, e.g. oxygen saturation measurements, the fiber-optical core has only two fibers. A single fiber core is also possible. A reinforcement fiber improves stiffness, kink resistance and overall strength of the probe. The reinforcement fiber is arranged essentially parallel to the core fibers. The reinforcement fiber may also be wound around the core in a helical manner thus improving the mechanical properties to an even higher degree. The outside of the sheath is coated with an antithrombogenic coating for reducing the danger of clots forming at the surface. The reinforcement fiber may be made of carbon, metal, ceramics or aramide.
    Type: Application
    Filed: August 19, 2009
    Publication date: February 25, 2010
    Inventors: Marcus Veeck, Oliver Goedje, Robert Herz, Thomas Thalmeier, Christoph Manegold, Matthias Bohn
  • Publication number: 20070089741
    Abstract: The invention refers to a method and apparatus for changing the concentration of a target gas at the blood compartment of a patient's lung from an actual target gas concentration to a desired target gas concentration during artificial ventilation with an inspiratory gas composition by a respirator being controlled via a set of ventilation parameters. In order to decrease the negative effects of general anaesthesia during artificial ventilation even further, the method according to the invention comprises the following steps: a) ventilating the lung in a first ventilation stage, and b) ventilating the lung in a second ventilation stage in which alveolar recruitment is promoted.
    Type: Application
    Filed: October 20, 2006
    Publication date: April 26, 2007
    Inventors: Stephan Bohm, Gerardo Tusman, Christoph Manegold