Patents by Inventor Christoph Ollinger

Christoph Ollinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220317068
    Abstract: A method for correcting distortion in a coherent electron diffraction imaging (CEDI) image induced by a projection lens makes use of a known secondary material that is imaged together with a sample of interest. Reflections generated from the secondary material are located in the image, and these observed reflections are used to approximate a beam center location. Using a known lattice structure of the secondary material, Friedel pairs are located in the image and unit cell vectors are identified. Predicted positions for each of the secondary material reflections are then determined, and the position differences between the observed reflections and the predicted reflections are used to construct a relocation function applicable to the overall image. The relocation function is then used to adjust the position of image components so as to correct for the distortion.
    Type: Application
    Filed: April 1, 2021
    Publication date: October 6, 2022
    Inventors: Joerg KAERCHER, Sergey LAZAREV, Christoph OLLINGER
  • Publication number: 20220163431
    Abstract: In a method of preparing a single molecule sample of a biological material for use in an imaging experiment, the single molecule sample is deposited on a graphene substrate using a method such as nanopipetting. Excess bulk fluid surrounding the molecule is then removed, for example, by mechanical blotting or controlled evaporation. An enclosing layer of graphene is then deposited and sealed to the graphene substrate so as to encapsulate the molecule. This sealing may include floating the enclosing layer in a water bath and moving it into contact with the graphene substrate. The molecule of interest may be deposited directly on the substrate, or a linker molecule may be first deposited to provide an attachment between the substrate and the molecule of interest.
    Type: Application
    Filed: February 12, 2020
    Publication date: May 26, 2022
    Inventors: Christoph OLLINGER, Roger D. DURST
  • Patent number: 11031745
    Abstract: An X-ray laser has a target anode of a crystalline material that emits X-ray radiation in response to excitation and that is located on a thermally conductive substrate. An X-ray source provides an input X-ray beam that illuminates a predetermined volume of the target anode at a predefined angle relative to a surface of the anode so as to induce a Borrmann mode standing wave in the predetermined volume. An electron source outputs an electron beam that is incident on the Borrmann mode region so as to cause electron impact ionization of the crystalline material and thereby induce stimulated emission of a coherent output X-ray beam.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: June 8, 2021
    Inventors: Roger D. Durst, Juergen Graf, Christoph Ollinger
  • Patent number: 10998693
    Abstract: An X-ray laser has a target anode of a crystalline material that emits X-ray radiation in response to excitation and that is located on a thermally conductive substrate. An X-ray source provides an input X-ray beam that illuminates a predetermined volume of the target anode at a predefined angle relative to a surface of the anode so as to induce a Borrmann mode standing wave in the predetermined volume. An electron source outputs an electron beam that is incident on the Borrmann mode region so as to cause electron impact ionization of the crystalline material and thereby induce stimulated emission of a coherent output X-ray beam.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: May 4, 2021
    Inventors: Roger D. Durst, Juergen Graf, Christoph Ollinger
  • Patent number: 10784078
    Abstract: An electron diffraction imaging system for imaging the three-dimensional structure of a single target molecule of a sample uses an electron source that emits a beam of electrons toward the sample, and a two-dimensional detector that detects electrons diffracted by the sample and generates an output indicative of their spatial distribution. A sample support is transparent to electrons in a region in which the sample is located, and is rotatable and translatable in at least two perpendicular directions. The electron beam has an operating energy between 5 keV and 30 keV, and beam optics block highly divergent electrons to limit the beam diameter to no more than three times the size of the sample molecule and provide a lateral coherence length of at least 15 nm. An adjustment system adjusts the sample support position in response to the detector output to center the target molecule in the beam.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: September 22, 2020
    Inventors: Roger D. Durst, Christoph Ollinger
  • Publication number: 20200135424
    Abstract: An electron diffraction imaging system for imaging the three-dimensional structure of a single target molecule of a sample uses an electron source that emits a beam of electrons toward the sample, and a two-dimensional detector that detects electrons diffracted by the sample and generates an output indicative of their spatial distribution. A sample support is transparent to electrons in a region in which the sample is located, and is rotatable and translatable in at least two perpendicular directions. The electron beam has an operating energy between 5 keV and 30 keV, and beam optics block highly divergent electrons to limit the beam diameter to no more than three times the size of the sample molecule and provide a lateral coherence length of at least 15 nm. An adjustment system adjusts the sample support position in response to the detector output to center the target molecule in the beam.
    Type: Application
    Filed: October 31, 2018
    Publication date: April 30, 2020
    Inventors: Roger D. DURST, Christoph OLLINGER
  • Patent number: 10473599
    Abstract: An X-ray source uses excitation of a liquid metal beam of ions or ionized droplets to produce an X-ray output with higher brightness than conventional sources. The beam may be accelerated from a liquid metal source using an extraction electrode. The source may have an emitter tip, and the acceleration of the liquid metal may include field emission from a Taylor cone. An electrostatic or electromagnetic focusing electrode may be used to reduce a cross-sectional diameter of the beam. The liquid metal beam has a relatively high velocity as it does not suffer from flow turbulence, thus allowing for a more energetic excitation and a correspondingly higher brightness. A beam dump may also be used to collect the liquid metal beam after excitation, and may be concave with no direct sight lines to either an electron beam cathode or to X-ray windows of an enclosure for the source.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: November 12, 2019
    Inventors: Roger D. Durst, Christoph Ollinger
  • Publication number: 20190170670
    Abstract: An X-ray source uses excitation of a liquid metal beam of ions or ionized droplets to produce an X-ray output with higher brightness than conventional sources. The beam may be accelerated from a liquid metal source using an extraction electrode. The source may have an emitter tip, and the acceleration of the liquid metal may include field emission from a Taylor cone. An electrostatic or electromagnetic focusing electrode may be used to reduce a cross-sectional diameter of the beam. The liquid metal beam has a relatively high velocity as it does not suffer from flow turbulence, thus allowing for a more energetic excitation and a correspondingly higher brightness. A beam dump may also be used to collect the liquid metal beam after excitation, and may be concave with no direct sight lines to either an electron beam cathode or to X-ray windows of an enclosure for the source.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 6, 2019
    Inventors: Roger D. DURST, Christoph OLLINGER
  • Patent number: 10049850
    Abstract: An x-ray apparatus (1), has an electron beam source (2), a target (4), onto which the electron beam (3) is directed to form a focal spot (5; 5a, 5b) on the target (4), x-ray optics (6) for collecting x-rays emitted from the focal spot (5; 5a, 5b) to form an x-ray beam (8) and a sample position (9) at which the x-ray beam (8) is directed. The x-ray apparatus (1) further includes an electrostatic or electromagnetic electron beam deflection device (10) suitable for moving the focal spot (5; 5a, 5b) on the target (4). The extension of the focal spot (5; 5a, 5b) in any direction (x, y, z) is at least a factor of 1.5 smaller than the extension of the target (4). An x-ray apparatus is thereby provided with simplified alignment of the x-ray optics with respect to a microfocus x-ray source.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: August 14, 2018
    Assignee: Bruker AXS GmbH
    Inventors: Christoph Ollinger, Carsten Michaelsen, Andreas Kleine, Juergen Graf
  • Patent number: 9897559
    Abstract: An X-ray diffraction system uses a two-dimensional detector to detect diffracted X-ray energy at a plurality of radial positions surrounding a sample location, the results at each position being combined to form a final diffraction image. To minimize smearing in the final image, the detector pixel intensities at each position are reapportioned among the pixel locations prior to being combined with the intensities collected at other positions. A two-dimensional pixel array space of the detector is projected onto a cylinder to form a projected pixel array space, and a virtual cylindrical detection surface representative of an ideal cylindrical detector is determined. An overlap between the pixels of the projected pixel array space and the pixels of the virtual cylindrical detection surface is determined, and pixel intensities are reapportioned accordingly. The reapportionment may include dividing each pixel space into subpixels and redistributing the subpixels among adjacent pixels.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 20, 2018
    Inventors: Bob Baoping He, Olaf Meding, Christian Maurer, Christoph Ollinger
  • Publication number: 20170176355
    Abstract: An X-ray diffraction system uses a two-dimensional detector to detect diffracted X-ray energy at a plurality of radial positions surrounding a sample location, the results at each position being combined to form a final diffraction image. To minimize smearing in the final image, the detector pixel intensities at each position are reapportioned among the pixel locations prior to being combined with the intensities collected at other positions. A two-dimensional pixel array space of the detector is projected onto a cylinder to form a projected pixel array space, and a virtual cylindrical detection surface representative of an ideal cylindrical detector is determined. An overlap between the pixels of the projected pixel array space and the pixels of the virtual cylindrical detection surface is determined, and pixel intensities are reapportioned accordingly. The reapportionment may include dividing each pixel space into subpixels and redistributing the subpixels among adjacent pixels.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: Bob Baoping He, Olaf Meding, Christian Maurer, Christoph Ollinger
  • Publication number: 20150380202
    Abstract: An x-ray apparatus (1), has an electron beam source (2), a target (4), onto which the electron beam (3) is directed to form a focal spot (5; 5a, 5b) on the target (4), x-ray optics (6) for collecting x-rays emitted from the focal spot (5; 5a, 5b) to form an x-ray beam (8) and a sample position (9) at which the x-ray beam (8) is directed. The x-ray apparatus (1) further includes an electrostatic or electromagnetic electron beam deflection device (10) suitable for moving the focal spot (5; 5a, 5b) on the target (4). The extension of the focal spot (5; 5a, 5b) in any direction (x, y, z) is at least a factor of 1.5 smaller than the extension of the target (4). An x-ray apparatus is thereby provided with simplified alignment of the x-ray optics with respect to a microfocus x-ray source.
    Type: Application
    Filed: September 1, 2015
    Publication date: December 31, 2015
    Applicant: Bruker AXS GmbH
    Inventors: Christoph Ollinger, Carsten Michaelsen, Andreas Kleine, Juergen Graf
  • Patent number: 8345822
    Abstract: An X-ray optical configuration (1), comprising a position for an X-ray source (2), a position for a sample (3), a first focusing element (4) for directing X-ray radiation from the position of the X-ray source (2) via an intermediate focus (5) onto the position of the sample (3), and an X-ray detector (6) that can be moved on a circular arc (7) of radius R around the position of the sample (3), is characterized in that the configuration also comprises a second focusing element (8) for directing part of the X-ray radiation emanating from the intermediate focus (5) onto the position of the sample (3), and an aperture system (9) for selecting between illumination of the position of the sample (3) exclusively and directly from the intermediate focus (5) (=first optical path (10?)), or exclusively via the second focusing element (8) (=second optical path (10?)).
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: January 1, 2013
    Assignee: Bruker AXS GmbH
    Inventor: Christoph Ollinger
  • Patent number: 7983389
    Abstract: An X-ray optical element (1, 1?, 1?) with a Soller slit comprising several lamellas for collimating an X-ray beam with respect to the direction of the axis (5, 15) of the Soller slit, and a further collimator for delimiting an X-ray (10), wherein the further collimator is rigidly connected to the Soller slit (2, 14) during operation, is characterized in that the X-ray beam (10) delimited by the further collimator intersects the axis (5, 15) of the Soller slit within the Soller slit, and the direction of the X-ray beam (10) subtends an angle ??10° with respect to the axis (5, 15) of the Soller slit. An X-ray optical element (1, 1?, 1?) with a Soller slit (2, 14) and a further collimator is thereby realized, which permits automatic change between the Soller slit (2, 14) and the further collimator.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: July 19, 2011
    Assignee: Bruker AXS GmbH
    Inventors: Christoph Ollinger, Norbert Kuhnmuench
  • Publication number: 20110135059
    Abstract: An X-ray optical configuration (1), comprising a position for an X-ray source (2), a position for a sample (3), a first focusing element (4) for directing X-ray radiation from the position of the X-ray source (2) via an intermediate focus (5) onto the position of the sample (3), and an X-ray detector (6) that can be moved on a circular arc (7) of radius R around the position of the sample (3), is characterized in that the configuration also comprises a second focusing element (8) for directing part of the X-ray radiation emanating from the intermediate focus (5) onto the position of the sample (3), and an aperture system (9) for selecting between illumination of the position of the sample (3) exclusively and directly from the intermediate focus (5) (=first optical path (10?)), or exclusively via the second focusing element (8) (=second optical path (10?)).
    Type: Application
    Filed: November 30, 2010
    Publication date: June 9, 2011
    Applicant: Bruker AXS GmbH
    Inventor: Christoph Ollinger
  • Publication number: 20100135460
    Abstract: An X-ray optical element (1, 1?, 1?) with a Soller slit comprising several lamellas for collimating an X-ray beam with respect to the direction of the axis (5, 15) of the Soller slit, and a further collimator for delimiting an X-ray (10), wherein the further collimator is rigidly connected to the Soller slit (2, 14) during operation, is characterized in that the X-ray beam (10) delimited by the further collimator intersects the axis (5, 15) of the Soller slit within the Soller slit, and the direction of the X-ray beam (10) subtends an angle ??10° with respect to the axis (5, 15) of the Soller slit. An X-ray optical element (1, 1?, 1?) with a Soller slit (2, 14) and a further collimator is thereby realized, which permits automatic change between the Soller slit (2, 14) and the further collimator.
    Type: Application
    Filed: November 25, 2009
    Publication date: June 3, 2010
    Applicant: Bruker AXS GmbH
    Inventors: Christoph Ollinger, Norbert Kuhnmuench