Patents by Inventor Christoph REUTER

Christoph REUTER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11906546
    Abstract: Active cantilever probes having a thin coating incorporated into their design are disclosed. The probes can be operated in opaque and/or chemically harsh environments without the need of a light source or optical system and without being significantly negatively impacted by corrosion. The probes include a substrate that has a cantilever, a thermomechanical actuator associated with the cantilever, a piezoresistive stress sensor disposed on the cantilever, and a thin coating disposed on the cantilever and the piezoresistive stress sensor. The coating is bonded to the substrate, is thermally conductive, and has a low thermal resistance. Further, the thin coating is configured to have little to no impact on one or more of a mass of the active probe, a residual stress of the cantilever, or a stiffness of the active probe. Techniques for performing topography and making other measurements in an opaque and/or chemically harsh environment are also provided.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: February 20, 2024
    Assignees: Massachusetts Institute of Technology, Nano Analytik GMBH, Synsfuels Americas Corporation
    Inventors: Fangzhou Xia, Chen Yang, Yi Wang, Kamal Youcef-Toumi, Christoph Reuter, Tzvetan Ivanov, Mathias Holz, Ivo Rangelow
  • Publication number: 20220244288
    Abstract: Active cantilever probes having a thin coating incorporated into their design are disclosed. The probes can be operated in opaque and/or chemically harsh environments without the need of a light source or optical system and without being significantly negatively impacted by corrosion. The probes include a substrate that has a cantilever, a thermomechanical actuator associated with the cantilever, a piezoresistive stress sensor disposed on the cantilever, and a thin coating disposed on the cantilever and the piezoresistive stress sensor. The coating is bonded to the substrate, is thermally conductive, and has a low thermal resistance. Further, the thin coating is configured to have little to no impact on one or more of a mass of the active probe, a residual stress of the cantilever, or a stiffness of the active probe. Techniques for performing topography and making other measurements in an opaque and/or chemically harsh environment are also provided.
    Type: Application
    Filed: July 6, 2020
    Publication date: August 4, 2022
    Inventors: Fangzhou XIA, Chen YANG, Yi WANG, Kamal YOUCEF-TOUMI, Christoph REUTER, Tzvetan IVANOV, Mathias HOLZ, W. Ivo RANGELOW