Patents by Inventor Christoph ROSENBERG

Christoph ROSENBERG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11226245
    Abstract: A force sensor includes a frame and an oscillation structure which has arms and can oscillate freely in the frame. The arms are fixed to suspension frame regions and run transverse to one another at least in sections. At least one conductor extends along at least two arms. An AC voltage can be applied to the at least one conductor to excite at least one oscillation mode of the oscillation structure with a resonant frequency using Lorentz force. The force sensor is designed such that the suspension regions are at least partially spatially displaced relative to one another when a force is applied to the frame, that the magnitude of the spatial displacement of the suspension regions depends on the magnitude of the force, and that the spatial displacement of the suspension regions causes detuning of the resonant frequency, the magnitude of which depends on the spatial displacement magnitude.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: January 18, 2022
    Assignee: Technische Universitaet Wien
    Inventors: Alexander Dabsch, Franz Keplinger, Christoph Rosenberg
  • Publication number: 20210116313
    Abstract: A force sensor includes a frame and an oscillation structure which has arms and can oscillate freely in the frame. The arms are fixed to suspension frame regions and run transverse to one another at least in sections. At least one conductor extends along at least two arms. An AC voltage can be applied to the at least one conductor to excite at least one oscillation mode of the oscillation structure with a resonant frequency using Lorentz force. The force sensor is designed such that the suspension regions are at least partially spatially displaced relative to one another when a force is applied to the frame, that the magnitude of the spatial displacement of the suspension regions depends on the magnitude of the force, and that the spatial displacement of the suspension regions causes detuning of the resonant frequency, the magnitude of which depends on the spatial displacement magnitude.
    Type: Application
    Filed: March 31, 2017
    Publication date: April 22, 2021
    Applicant: Technische Universitaet Wien
    Inventors: Alexander DABSCH, Franz KEPLINGER, Christoph ROSENBERG