Patents by Inventor Christoph Sessler

Christoph Sessler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11355945
    Abstract: A compensation device (20) for compensating for a discharge current has a compensation current generation device (28), a potential generation device (150), active conductor terminals (61, 62, 63, 64) and a PE conductor terminal (65), which active conductor terminals (61, 62, 63, 64) have a first active conductor terminal (61) and a second active conductor terminal (62; 64), which potential generation device (150) is interconnected with the first active conductor terminal (61) and has a potential generation device terminal (155), which potential generation device (150) is designed to provide a potential at the potential generation device terminal (155) which at least temporarily differs from the potential at the first active conductor terminal (61), and which compensation current generation device (28) is designed to effect a compensation current (I_COMP) between the potential generation device terminal (155) and the PE conductor terminal (65).
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: June 7, 2022
    Inventors: Daniel Spesser, Tim Pfizenmaier, Florian Mayer, Stefan Endres, Christoph Sessler
  • Patent number: 11283366
    Abstract: A rectifier arrangement (20) for rectifying an AC voltage into a DC voltage has a first connection (21), a second connection (22), a third connection (23) and a fourth connection (24), which rectifier arrangement (20) has an intermediate circuit (50) with a first line (51), a second line (52) and a node point (53), which node point (53) is connected to the first line (51) via at least one first capacitor (61) and to the second line (52) via at least one second capacitor (62), which first connection (21), second connection (22) and third connection (23) are each connected to a star point (40) via an associated circuit arrangement (31, 32, 33), which fourth connection (24) is likewise connected to the star point (40), and which star point (40) is connected to the node point (53) via a controllable switch (45).
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: March 22, 2022
    Assignee: Dr. Ing. h. c. F Porsche Aktiengesllschaft
    Inventors: Daniel Spesser, Tim Pfizenmaier, Stefan Endres, Christoph Sessler
  • Patent number: 11228255
    Abstract: A rectifier assembly (20) for rectifying an AC voltage into a DC voltage has at least one first terminal (21, 22, 23), a second terminal (24) and an intermediate circuit (50). The first terminal (21, 22, 23) is connected via a circuit (31, 32, 33) to a neutral point (40), and the second terminal (24) is connected to the neutral point (40). The circuit arrangement (31, 32, 33) has a first branch (81) and a second branch (82) connected in parallel with the first branch (81). Both branches (81, 82) comprise a changeover arrangement (92, 93) and a coil (91, 94) connected in series with the changeover arrangement. The coil (91) in the first branch (81) is on the side of the changeover arrangement (92) averted from the neutral point (40), and the coil (94) in the second branch (82) is on the side facing the neutral point (40).
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: January 18, 2022
    Inventors: Daniel Spesser, Tim Pfizenmaier, Stefan Endres, Christoph Sessler
  • Patent number: 11190003
    Abstract: A method for controlling a charging apparatus of a vehicle, in particular an electric or hybrid vehicle, wherein the charging apparatus has a charging device including a protection and monitoring device. The vehicle includes a high-voltage on-board power system and an electrical energy storage apparatus connected to the high-voltage on-board power system. The method includes electrically connecting the high-voltage on-board power system to charging connections of an energy supply system by the charging apparatus. The charging connections include a neutral conductor, a protective conductor and at least one phase conductor. A protective conductor resistance is detected between the neutral conductor and the protective conductor by feeding in a test current by the protection and monitoring device. A frequency of the test current is filtered out of the compensation frequency range on a narrowband basis.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: November 30, 2021
    Inventors: Tim Pfizenmaier, Daniel Spesser, Michael Kammer, Florian Habel, Eckhard Broeckmann, Frank Mehling, Michael Guenther Zeyen, Wolfgang Hofheinz, Guenter Uhl, Dietmar Bytzek, Juergen Hetzler, Stefan Zeltner, Stefan Endres, Christoph Sessler
  • Publication number: 20210257848
    Abstract: A compensation device (20) for compensating for a discharge current has a compensation current generation device (28), a potential generation device (150), active conductor terminals (61, 62, 63, 64) and a PE conductor terminal (65), which active conductor terminals (61, 62, 63, 64) have a first active conductor terminal (61) and a second active conductor terminal (62; 64), which potential generation device (150) is interconnected with the first active conductor terminal (61) and has a potential generation device terminal (155), which potential generation device (150) is designed to provide a potential at the potential generation device terminal (155) which at least temporarily differs from the potential at the first active conductor terminal (61), and which compensation current generation device (28) is designed to effect a compensation current (I_COMP) between the potential generation device terminal (155) and the PE conductor terminal (65).
    Type: Application
    Filed: January 26, 2021
    Publication date: August 19, 2021
    Inventors: Daniel Spesser, Tim Pfizenmaier, Florian Mayer, Stefan Endres, Christoph Sessler
  • Publication number: 20200295670
    Abstract: A rectifier assembly (20) for rectifying an AC voltage into a DC voltage has at least one first terminal (21, 22, 23), a second terminal (24) and an intermediate circuit (50). The first terminal (21, 22, 23) is connected via a circuit (31, 32, 33) to a neutral point (40), and the second terminal (24) is connected to the neutral point (40). The circuit arrangement (31, 32, 33) has a first branch (81) and a second branch (82) connected in parallel with the first branch (81). Both branches (81, 82) comprise a changeover arrangement (92, 93) and a coil (91, 94) connected in series with the changeover arrangement. The coil (91) in the first branch (81) is on the side of the changeover arrangement (92) averted from the neutral point (40), and the coil (94) in the second branch (82) is on the side facing the neutral point (40).
    Type: Application
    Filed: March 16, 2020
    Publication date: September 17, 2020
    Inventors: Daniel Spesser, Tim Pfizenmaier, Stefan Endres, Christoph Sessler
  • Publication number: 20190270382
    Abstract: A method for controlling a charging apparatus of a vehicle, in particular an electric or hybrid vehicle, wherein the charging apparatus has a charging device including a protection and monitoring device. The vehicle includes a high-voltage on-board power system and an electrical energy storage apparatus connected to the high-voltage on-board power system. The method includes electrically connecting the high-voltage on-board power system to charging connections of an energy supply system by the charging apparatus. The charging connections include a neutral conductor, a protective conductor and at least one phase conductor. A protective conductor resistance is detected between the neutral conductor and the protective conductor by feeding in a test current by the protection and monitoring device. A frequency of the test current is filtered out of the compensation frequency range on a narrowband basis.
    Type: Application
    Filed: March 4, 2019
    Publication date: September 5, 2019
    Applicant: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventors: Tim Pfizenmaier, Daniel Spesser, Michael Kammer, Florian Habel, Eckhard Broeckmann, Frank Mehling, Michael Guenther Zeyen, Wolfgang Hofheinz, Guenter Uhl, Dietmar Bytzek, Juergen Hetzler, Stefan Zeltner, Stefan Endres, Christoph Sessler