Patents by Inventor Christoph Sosna

Christoph Sosna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11882506
    Abstract: A method collects data in a network by operation of a local sensor of a consumption meter where the network is part of a supply network. The network distributes a consumable good. The sensor has a measuring element providing raw measurement data corresponding to a physical or physicochemical value or parameter. The sensor has a wired and/or radio communication device and a memory. For the determination of the measurement resolution of the sensor the conditions for generating time stampings using a correlation model are determined in advance, on the basis of the correlation model time stampings of successive raw measurement data in the sensor are generated. The time stampings are transmitted over a wired connection and/or a radio link so that on the basis of the time stampings using the correlation model the raw measurement data collected by the measuring element are reconstructed and evaluated and used for network monitoring.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: January 23, 2024
    Assignees: Diehl Metering Systems GmbH, Diehl Metering S.A.S.
    Inventors: Aster Breton, Guy Bach, Christoph Sosna, Klaus Gottschalk, Achim Schmidt, Thomas Kauppert, Petra Joppich-Dohlus, Stefan Schmitz
  • Patent number: 11422005
    Abstract: A method collects data during operation of a local sensor as a component of a supply network for distributing a consumable. The supply network contains a master in communication with the local sensor via a primary communication path. The sensor contains a measuring element which supplies, as raw measurement data, elementary measurement units. A wired primary communication path is provided between the sensor and the master. To define the measurement resolution of the sensor, the conditions for generating time stamps are defined in advance using a correlation model. The time stamps of successive items of raw measurement data are generated in the sensor on the basis of the correlation model. The time stamps are transmitted via the primary communication path so that the raw measurement data acquired by the measuring element is reconstructed using the correlation model on the basis of the time stamps received by the master, and analyzed.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: August 23, 2022
    Assignees: Diehl Meterings Systems GmbH, Diehl Metering S.A.S.
    Inventors: Petra Joppich-Dohlus, Thomas Kauppert, Achim Schmidt, Stefan Schmitz, Christoph Sosna, Klaus Gottschalk, Guy Bach, Aster Breton
  • Patent number: 11425473
    Abstract: A method collects data via a sensor being part of a supply network which distributes a consumable. The sensor contains a measuring element which provides elementary measuring units, which correspond to a variable or a parameter, as raw measurement data, where consumption data are generated from the elementary measuring units. The sensor has a communication device and a storage device. To determine the measurement resolution of the sensor, the conditions for generating time stamps are determined using a correlation model. Time stamps of successive raw measurement data are generated in the sensor based on the correlation model, the time stamps are transmitted via a wired connection and/or via a radio path, with the result that the raw measurement data acquired by the measuring element are reconstructed and evaluated on the basis of the time stamps using the correlation model. The consumption data are transmitted in parallel with the time stamps.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: August 23, 2022
    Assignees: Diehl Metering Systems GmbH, Diehl Metering S.A.S.
    Inventors: Petra Joppich-Dohlus, Thomas Kauppert, Achim Schmidt, Stefan Schmitz, Christoph Sosna, Klaus Gottschalk, Guy Bach, Aster Breton
  • Patent number: 11399222
    Abstract: A method for collecting data, preferably in connection with a consumption, a physical or physico-chemical parameter and/or an operating state in a supply network for consumables. A measuring element of a local sensor supplies raw measurement data in the form of elementary measurement units that correspond to a physical or physico-chemical variable or parameter. In order to define the measurement resolution of the sensor, the conditions for generating time stamps are defined in advance using a correlation model, time stamps of successive items of raw measurement data are generated in the sensor on the basis of the correlation model, the time stamps are transmitted so that the raw measurement data acquired by the measuring element is reconstructed on the basis of the time stamps using the correlation model, and analyzed. The transmission is performed with a dynamically adaptable redundancy.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: July 26, 2022
    Assignees: Diehl Metering Systems GmbH, Diehl Metering S.A.S.
    Inventors: Stefan Schmitz, Thomas Kauppert, Petra Joppich-Dohlus, Achim Schmidt, Christoph Sosna, Klaus Gottschalk, Guy Bach, Aster Breton
  • Patent number: 11245969
    Abstract: A method for collecting data of a consumption, a physical or physico-chemical parameter and/or an operating state in a supply network for consumables. A measuring element of a local sensor provides elementary measuring units, which correspond to at least one physical or physico-chemical variable or at least one physical or physico-chemical parameter, as raw measurement data. In order to determine the measurement resolution of the sensor, the conditions for generating time stamps are determined in advance using a correlation model, time stamps of successive raw measurement data are generated in the sensor on the basis of the correlation model, and the time stamps are transmitted via a wired connection and/or via a radio path. The raw measurement data are reconstructed and evaluated based on the time stamps with the correlation model. The conditions for generating time stamps can be changed dynamically within the framework of the correlation model.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: February 8, 2022
    Assignees: Diehl Metering Systems GmbH, Diehl Metering S.A.S.
    Inventors: Stefan Schmitz, Thomas Kauppert, Petra Joppich-Dohlus, Achim Schmidt, Christoph Sosna, Klaus Gottschalk, Guy Bach, Aster Breton
  • Patent number: 11169103
    Abstract: A thermal gas sensor for measuring the thermal diffusivity and/or the thermal conductivity of a gas or gas mixture includes a substrate. In the surface of the substrate a trench is formed, as well as at least two conductor structures arranged at a distance from one another on the surface of the substrate. The conductor structures respectively each contain at least two contact sections and a web section connected to the contact sections, the web sections of the conductor structures crossing over the trench at a distance from one another. At least one slot is formed between at least two contact sections of different conductor structures in at least one region of the surface of the substrate.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: November 9, 2021
    Assignee: Diehl Metering GmbH
    Inventors: Ulf Hammerschmidt, Andreas Benkert, Christoph Sosna, Karl Herrmann
  • Patent number: 11169102
    Abstract: A measurement device ascertains the thermal conductivity of a fluid. The device has a fluid volume holding the fluid, a controller, and a sensor module disposed in the fluid volume. The sensor module has a supporting body and a plurality of sensor wires that extend freely between in each case two contact positions of the supporting body. One of the sensor wires serves as a heat source and is able to be energized for this purpose by the controller. The controller is set up to capture, via at least two of the sensor wires that serve as temperature sensors and are arranged at different distances from the heat source, temperature measurement values that depend on the temperature at the respective temperature sensor, and to ascertain the thermal conductivity in dependence on the temperature measurement values.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: November 9, 2021
    Assignee: Diehl Metering GmbH
    Inventors: Ulf Hammerschmidt, Andreas Benkert, Christoph Sosna, Karl Herrmann
  • Patent number: 11162813
    Abstract: A method collects data, a physical or physico-chemical parameter and/or an operating state, during operation of a sensor. The sensor contains a measuring element which provides elementary measuring units, which correspond to a physical or physico-chemical variable or the physical or physico-chemical parameter, as raw measurement data, and the sensor has a communication device and a memory. To determine the measurement resolution of the sensor, the conditions for generating time stamps are first determined using a correlation model. Time stamps of successive raw measurement data are generated in the sensor on the basis of the correlation model. The time stamps are transmitted with the result that the raw measurement data acquired by the measuring element are reconstructed and evaluated based on the time stamps using the correlation model. Wherein operating state monitoring of the sensor is carried out by comparing current time stamps with historical and/or empirical time stamps.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: November 2, 2021
    Assignees: Diehl Metering Systems GmbH, Diehl Metering S.A.S.
    Inventors: Christoph Sosna, Petra Joppich-Dohlus, Achim Schmidt, Thomas Kauppert, Stefan Schmitz, Klaus Gottschalk, Guy Bach, Aster Breton
  • Publication number: 20210306821
    Abstract: A method collects data in a network by operation of a local sensor of a consumption meter where the network is part of a supply network. The network distributes a consumable good. The sensor has a measuring element providing raw measurement data corresponding to a physical or physicochemical value or parameter. The sensor has a wired and/or radio communication device and a memory. For the determination of the measurement resolution of the sensor the conditions for generating time stampings using a correlation model are determined in advance, on the basis of the correlation model time stampings of successive raw measurement data in the sensor are generated. The time stampings are transmitted over a wired connection and/or a radio link so that on the basis of the time stampings using the correlation model the raw measurement data collected by the measuring element are reconstructed and evaluated and used for network monitoring.
    Type: Application
    Filed: June 14, 2021
    Publication date: September 30, 2021
    Inventors: Aster Breton, Guy Bach,, Christoph Sosna, Klaus Gottschalk, Achim Schmidt, Thomas Kauppert, Petra Joppich-Dohlus, Stefan Schmitz
  • Publication number: 20210306723
    Abstract: A method collects data in a network having a consumption meter as part of a supply network and containing a sensor. The sensor contains a measuring element which provides raw measurement data corresponding to a physical or physicochemical value or parameter. The sensor contains a communication device and a memory. For the determination of the measurement resolution of the sensor the conditions for generating time stampings using a correlation model are determined in advance. On a basis of the correlation model, time stampings of successive raw measurement data in the sensor are generated, the time stampings are stored in the memory. The time stampings are transmitted over a wired connection and/or a radio link so that on the basis of the time stampings using the correlation model the raw measurement data collected by the measuring element are reconstructed and evaluated. Whereas raw measurement data is used for on-demand network analysis.
    Type: Application
    Filed: June 14, 2021
    Publication date: September 30, 2021
    Inventors: Aster Breton, Guy Bach, Christoph Sosna, Klaus Gottschalk, Achim Schmidt, Thomas Kauppert, Petra Joppich-Dohlus, Stefan Schmitz
  • Patent number: 11118938
    Abstract: A method for collecting data, preferably in connection with a consumption, a physical or physico-chemical parameter and/or an operating state in a supply network for consumables. A measuring element of a local sensor provides elementary measuring units, which correspond to at least one physical or physico-chemical variable or parameter, as raw measurement data. In order to determine the measurement resolution of the sensor, the conditions for generating time stamps are determined in advance using a correlation model, time stamps of successive raw measurement data are generated in the sensor on the basis of the correlation model, the time stamps are transmitted and the raw measurement data acquired by the measuring element are reconstructed and evaluated on the basis of the time stamps using the correlation model. The temporal offset between a sensor and a receiver is corrected by transmitting telegrams to compensate for the temporal offset.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: September 14, 2021
    Assignees: Diehl Metering Systems GmbH, Diehl Metering S.A.S.
    Inventors: Achim Schmidt, Thomas Kauppert, Petra Joppich-Dohlus, Stefan Schmitz, Christoph Sosna, Klaus Gottschalk, Guy Bach, Aster Breton
  • Publication number: 20200196032
    Abstract: A method for collecting data of a consumption, a physical or physico-chemical parameter and/or an operating state in a supply network for consumables. A measuring element of a local sensor provides elementary measuring units, which correspond to at least one physical or physico-chemical variable or at least one physical or physico-chemical parameter, as raw measurement data. In order to determine the measurement resolution of the sensor, the conditions for generating time stamps are determined in advance using a correlation model, time stamps of successive raw measurement data are generated in the sensor on the basis of the correlation model, and the time stamps are transmitted via a wired connection and/or via a radio path. The raw measurement data are reconstructed and evaluated based on the time stamps with the correlation model. The conditions for generating time stamps can be changed dynamically within the framework of the correlation model.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 18, 2020
    Inventors: STEFAN SCHMITZ, THOMAS KAUPPERT, PETRA JOPPICH-DOHLUS, ACHIM SCHMIDT, CHRISTOPH SOSNA, KLAUS GOTTSCHALK, GUY BACH, ASTER BRETON
  • Publication number: 20200196033
    Abstract: A method for collecting data, preferably in connection with a consumption, a physical or physico-chemical parameter and/or an operating state in a supply network for consumables. A measuring element of a local sensor supplies raw measurement data in the form of elementary measurement units that correspond to a physical or physico-chemical variable or parameter. In order to define the measurement resolution of the sensor, the conditions for generating time stamps are defined in advance using a correlation model, time stamps of successive items of raw measurement data are generated in the sensor on the basis of the correlation model, the time stamps are transmitted so that the raw measurement data acquired by the measuring element is reconstructed on the basis of the time stamps using the correlation model, and analyzed. The transmission is performed with a dynamically adaptable redundancy.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 18, 2020
    Inventors: STEFAN SCHMITZ, THOMAS KAUPPERT, PETRA JOPPICH-DOHLUS, ACHIM SCHMIDT, CHRISTOPH SOSNA, KLAUS GOTTSCHALK, GUY BACH, ASTER BRETON
  • Publication number: 20200191608
    Abstract: A method collects data during operation of a local sensor as a component of a supply network for distributing a consumable. The supply network contains a master in communication with the local sensor via a primary communication path. The sensor contains a measuring element which supplies, as raw measurement data, elementary measurement units. A wired primary communication path is provided between the sensor and the master. To define the measurement resolution of the sensor, the conditions for generating time stamps are defined in advance using a correlation model. The time stamps of successive items of raw measurement data are generated in the sensor on the basis of the correlation model. The time stamps are transmitted via the primary communication path so that the raw measurement data acquired by the measuring element is reconstructed using the correlation model on the basis of the time stamps received by the master, and analyzed.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 18, 2020
    Inventors: PETRA JOPPICH-DOHLUS, THOMAS KAUPPERT, ACHIM SCHMIDT, STEFAN SCHMITZ, CHRISTOPH SOSNA, KLAUS GOTTSCHALK, GUY BACH, ASTER BRETON
  • Publication number: 20200191607
    Abstract: A method collects data, a physical or physico-chemical parameter and/or an operating state, during operation of a sensor. The sensor contains a measuring element which provides elementary measuring units, which correspond to a physical or physico-chemical variable or the physical or physico-chemical parameter, as raw measurement data, and the sensor has a communication device and a memory. To determine the measurement resolution of the sensor, the conditions for generating time stamps are first determined using a correlation model. Time stamps of successive raw measurement data are generated in the sensor on the basis of the correlation model. The time stamps are transmitted with the result that the raw measurement data acquired by the measuring element are reconstructed and evaluated based on the time stamps using the correlation model. Wherein operating state monitoring of the sensor is carried out by comparing current time stamps with historical and/or empirical time stamps.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 18, 2020
    Inventors: CHRISTOPH SOSNA, Petra Joppich-Dohlus, Achim Schmidt, Thomas Kauppert, Stefan Schmitz, Klaus Gottschalk, Guy Bach, Aster Breton
  • Publication number: 20200191609
    Abstract: A method for collecting data, preferably in connection with a consumption, a physical or physico-chemical parameter and/or an operating state in a supply network for consumables. A measuring element of a local sensor provides elementary measuring units, which correspond to at least one physical or physico-chemical variable or parameter, as raw measurement data. In order to determine the measurement resolution of the sensor, the conditions for generating time stamps are determined in advance using a correlation model, time stamps of successive raw measurement data are generated in the sensor on the basis of the correlation model, the time stamps are transmitted and the raw measurement data acquired by the measuring element are reconstructed and evaluated on the basis of the time stamps using the correlation model. The temporal offset between a sensor and a receiver is corrected by transmitting telegrams to compensate for the temporal offset.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 18, 2020
    Inventors: ACHIM SCHMIDT, THOMAS KAUPPERT, PETRA JOPPICH-DOHLUS, STEFAN SCHMITZ, CHRISTOPH SOSNA, KLAUS GOTTSCHALK, GUY BACH, ASTER BRETON
  • Publication number: 20200196031
    Abstract: A method collects data via a sensor being part of a supply network which distributes a consumable. The sensor contains a measuring element which provides elementary measuring units, which correspond to a variable or a parameter, as raw measurement data, where consumption data are generated from the elementary measuring units. The sensor has a communication device and a storage device. To determine the measurement resolution of the sensor, the conditions for generating time stamps are determined using a correlation model. Time stamps of successive raw measurement data are generated in the sensor based on the correlation model, the time stamps are transmitted via a wired connection and/or via a radio path, with the result that the raw measurement data acquired by the measuring element are reconstructed and evaluated on the basis of the time stamps using the correlation model. The consumption data are transmitted in parallel with the time stamps.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 18, 2020
    Inventors: Petra JOPPICH-DOHLUS, Thomas KAUPPERT, Achim SCHMIDT, Stefan SCHMITZ, Christoph SOSNA, Klaus GOTTSCHALK, Guy BACH, Aster BRETON
  • Publication number: 20200124549
    Abstract: A thermal gas sensor for measuring the thermal diffusivity and/or the thermal conductivity of a gas or gas mixture includes a substrate. In the surface of the substrate a trench is formed, as well as at least two conductor structures arranged at a distance from one another on the surface of the substrate. The conductor structures respectively each contain at least two contact sections and a web section connected to the contact sections, the web sections of the conductor structures crossing over the trench at a distance from one another. At least one slot is formed between at least two contact sections of different conductor structures in at least one region of the surface of the substrate.
    Type: Application
    Filed: October 16, 2019
    Publication date: April 23, 2020
    Inventors: ULF HAMMERSCHMIDT, ANDREAS BENKERT, CHRISTOPH SOSNA, KARL HERRMANN
  • Publication number: 20200072773
    Abstract: A measurement device ascertains the thermal conductivity of a fluid. The device has a fluid volume holding the fluid, a controller, and a sensor module disposed in the fluid volume. The sensor module has a supporting body and a plurality of sensor wires that extend freely between in each case two contact positions of the supporting body. One of the sensor wires serves as a heat source and is able to be energized for this purpose by the controller. The controller is set up to capture, via at least two of the sensor wires that serve as temperature sensors and are arranged at different distances from the heat source, temperature measurement values that depend on the temperature at the respective temperature sensor, and to ascertain the thermal conductivity in dependence on the temperature measurement values.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 5, 2020
    Inventors: ULF HAMMERSCHMIDT, ANDREAS BENKERT, CHRISTOPH SOSNA, KARL HERRMANN
  • Publication number: 20170102256
    Abstract: A method for determining the volumetric flow rate of a fluid medium through a measuring section in a substantially gas-type-independent manner, includes heating the medium in a pulsed manner by using a heating element, detecting a first point in time at which a temperature maximum occurs at a first temperature sensor, the first temperature sensor being disposed adjacently upstream or downstream of the heating element, detecting a second point in time at which a temperature maximum occurs at a second temperature sensor, the second temperature sensor being disposed downstream of the heating element, the second temperature sensor being further away from the heating element than the first temperature sensor, and ascertaining a time difference between the first and second points in time. The volumetric flow rate is determined in dependence on the time difference. A device for carrying out the method is also provided.
    Type: Application
    Filed: December 5, 2016
    Publication date: April 13, 2017
    Inventors: Christoph Sosna, Ulf Hammerschmidt