Patents by Inventor Christoph Zaczek

Christoph Zaczek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070242250
    Abstract: Objective, in particular a projection objective for a microlithography projection-exposure installation, with at least one fluoride crystal lens. A reduction in the detrimental influence of birefringence is achieved if this lens is a (100)-lens with a lens axis which is approximately perpendicular to the {100} crystallographic planes or to the crystallographic planes equivalent thereto of the fluoride crystal. In the case of objectives with at least two fluoride crystal lenses, it is favorable if the fluoride crystal lenses are arranged such that they are rotated with respect to one another. The lens axes of the fluoride crystal lenses may in this case point not only in the <100> crystallographic direction but also in the <111> crystallographic direction or in the <110> crystallographic direction.
    Type: Application
    Filed: June 19, 2007
    Publication date: October 18, 2007
    Applicant: CARL ZEISS SMT AG
    Inventors: Aksel Goehnermeier, Alexandra Pazidis, Birgit Kuerz, Christoph Zaczek, Daniel Kraehmer
  • Patent number: 7239447
    Abstract: An objective, in particular a projection objective for a microlithography projection-exposure installation, with at least one fluoride crystal lens is disclosed. A reduction in the detrimental influence of birefringence is achieved if this lens is a (100)-lens with a lens axis which is approximately perpendicular to the {100} crystallographic planes or to the crystallographic planes equivalent thereto of the fluoride crystal. A further reduction in the detrimental influence of birefringence is obtained by covering an optical element with a compensation coating.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: July 3, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Aksel Goehnermeier, Alexandra Pazidis, Birgit Kuerz, Christoph Zaczek, Daniel Kraehmer
  • Publication number: 20070132989
    Abstract: Described is an examination system (1) for locating contamination (2) on an optical element (4) installed in an optical system (5), which examination system (1) comprises: a spatially resolving detector (6); imaging optics (7) that magnify in particular at a magnification of between 2 times and 100 times, for magnified imaging of a surface sub-region (3a) of the optical element (4) on the spatially resolving detector (6); as well as a movement mechanism (12), in particular a motorised movement mechanism (12), for displacing the imaging optics (7) together with the detector (6) relative to the surface (3) of the optical element (4) such that any desired surface sub-region of the surface (3) can be imaged at magnification.
    Type: Application
    Filed: December 7, 2006
    Publication date: June 14, 2007
    Inventors: Julian Kaller, Herbert Fink, Christoph Zaczek, Wolfgang Rupp
  • Publication number: 20070128453
    Abstract: The disclosure relates to optical systems, such as illumination devices or projection objectives of microlithographic projection exposure apparatuses, that include at least one optical element having at least one curved lens surface which carries an interference layer system. The interference layer system includes an alternating sequence of layers. At least one of the layers is subdivided by at least one intermediate layer having a thickness of not more than 5 nanometers. A column structure which is formed in the at least one subdivided layer is interrupted by the at least one intermediate layer.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 7, 2007
    Inventors: Alexandra Pazidis, Christoph Zaczek
  • Publication number: 20070024982
    Abstract: The invention relates to an imaging system of a microlithographic projection exposure apparatus, proposing improvements in the protection of exterior optical surfaces against contamination. In an imaging system with a projection objective that serves to project an image of a mask which can be set in position in an object plane onto a light-sensitive coating that can be set in position in an image plane, a membrane which is substantially transparent for an operating wavelength of the projection objective is arranged in such a way in relation to an exterior optical surface of the projection objective that between said optical surface and the membrane an interstitial space is formed which is designed to receive a liquid or gaseous medium.
    Type: Application
    Filed: June 13, 2006
    Publication date: February 1, 2007
    Applicant: Carl Zeiss SMT AG
    Inventors: Franz Stickel, Thure Boehm, Christoph Zaczek
  • Publication number: 20070007491
    Abstract: The invention concerns an optical element, in particular for an objective or an illumination system of a microlithographic projection exposure apparatus, including a substrate which for light of a predetermined working wavelength which passes through the substrate causes a first retardation between mutually perpendicular polarization states, and a layer which is epitaxially grown on the substrate and which is made from a material with non-cubic crystal structure, which by virtue of natural birefringence causes a second retardation between mutually perpendicular polarization states, which at least partially compensates for the first retardation caused in the substrate.
    Type: Application
    Filed: April 28, 2006
    Publication date: January 11, 2007
    Inventors: Ralf Mueller, Olaf Dittmann, Michael Totzeck, Daniel Kraehmer, Christoph Zaczek, Karl-Heinz Schuster
  • Publication number: 20060262389
    Abstract: A reflective optical element for radiation with a wavelength A in the ultraviolet wavelength range comprises a reflective surface, and a dielectric multilayer system formed on said reflective surface, said dielectric multilayer system comprising at least two successive pairs of layers, each pair of layers consisting of a high refractive index layer alternating with a low refractive index layer, wherein optical thicknesses of said high refractive index layers and optical thicknesses of said low refractive index layers of each adjacent pair of layers are different from each other.
    Type: Application
    Filed: May 15, 2006
    Publication date: November 23, 2006
    Inventor: Christoph Zaczek
  • Patent number: 7093937
    Abstract: An optical component and a coating system for coating substrates for optical components with essentially rotationally symmetric coatings, the system having a planetary-drive system (1) that has a rotating planet carrier (2) and several planets (4), each of which carries a single substrate, that corotate both with the planet carrier and with respect to the primary carrier. In one embodiment a set of stationary first masks (20) that allow controlling the radial variation in physical film thickness is arranged between a source (8) of material situated beneath the planets and the substrates. A set of second masks that mask off evaporation angles exceeding a limiting evaporation or incidence angle (? max) for every substrate also corotate with the primary carrier (2), which allows depositing coatings having a prescribed radial film-thickness distribution and a virtually constant density of the coating material over their full radial extents for relatively low, and only slightly varying, evaporation angles.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: August 22, 2006
    Assignee: Carl Zeiss SMT AG
    Inventors: Harry Bauer, Matthias Heller, Hans-Jochen Paul, Jens Ullmann, Patrick Scheible, Christoph Zaczek
  • Publication number: 20060171020
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Application
    Filed: March 29, 2006
    Publication date: August 3, 2006
    Applicant: Carl Zeiss SMT AG
    Inventors: Daniel Krahmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christoph Zaczek
  • Publication number: 20060132917
    Abstract: In a method for making an optical system for imaging a radiation distribution from an input surface of the optical system into an output surface of the optical system, the optical system has a multiplicity of optical components which determine an imaging quality of the optical system, which are arranged along an optical axis of the optical system and comprise at least one optical component which has a substrate with a substrate surface which is provided for carrying an interference layer system having a layer construction that determines the optical properties of the optical component covered with the interference layer system.
    Type: Application
    Filed: November 16, 2005
    Publication date: June 22, 2006
    Inventors: Christoph Zaczek, Thomas Muelders, Toralf Gruner
  • Publication number: 20050264884
    Abstract: A projection objective (5) for microlithography for projecting a pattern arranged in an object plane (8) of the projection objective (5) has in the light path between the object plane (8) and the image plane (11) at least one beam deflecting device (19) with at least one totally reflective surface (17) that is inclined to an incidence direction of the radiation incident on the totally reflective surface (17) in such a way that substantially all the radiation coming from the object plane (8) and striking the totally reflective surface (17) is totally reflected at the totally reflective surface (17). A high reflectivity in conjunction with high angle of incidence with respect to the surface normal to the totally reflective surface (17) can be achieved with the aid of the beam deflecting device (19).
    Type: Application
    Filed: February 17, 2005
    Publication date: December 1, 2005
    Inventors: Christoph Zaczek, David Shafer, Wilhelm Ulrich
  • Publication number: 20050254120
    Abstract: An optical reproduction system, which can be configured for example as a catadioptric projection lens. This system includes an optical axis and a first deflection mirror, which is tilted in relation to the optical axis at a given tilt angle. One of the deflection mirrors has a ratio Rsp of the reflection coefficient Rs for s-polarised light to the reflection coefficient Rp for p-polarised light, in an incidence angle range that includes the tilt angle, of greater than one, whereas the corresponding ratio for the other deflection mirror is less than one. The deflection mirrors thus ensure that the polarization-dependant influence of the travel light remains minimal.
    Type: Application
    Filed: February 28, 2005
    Publication date: November 17, 2005
    Inventors: Christoph Zaczek, Birgit Kurz, Jens Ullmann, Christian Wagner
  • Publication number: 20050243435
    Abstract: A catadioptric projection objective having a catadioptric lens section and a dioptric lens section is disclosed. Its catadioptric lens section comprises a concave mirror and a beam-deflecting device, which, in the case of one embodiment, comprises a physical beamsplitter having a polarization-beamsplitting surface, followed by a deflecting mirror. The reflectance curve of that beamsplitting surface for s-polarized light, the transmittance, TPBS, of that beamsplitting surface for p-polarized light, and the reflectance of the deflecting mirror for light coming from the beamsplitter are adapted to suit one another such that large variations in that transmittance, TPBS, for incidence angles close to the beamsplitting coating's internal Brewster angle are compensated such that the total transmittance of the beam-deflecting device remains essentially constant over the entire utilized range of incidence angles.
    Type: Application
    Filed: May 12, 2005
    Publication date: November 3, 2005
    Inventors: Christoph Zaczek, Thomas Muelders
  • Publication number: 20050225737
    Abstract: In a projection objective provided for imaging a pattern arranged in an object plane of the projection objective into an image plane of the projection objective with the aid of an immersion medium arranged between a last optical element of the projection objective in the light path and the image plane, the last optical element has a transparent substrate and a protective layer system that is fitted to the substrate, is provided for contact with the immersion medium and serves for increasing the resistance of the last optical element to degradation caused by the immersion medium.
    Type: Application
    Filed: December 20, 2004
    Publication date: October 13, 2005
    Inventors: Karl-Stefan Weissenrieder, Alexander Hirnet, Alexandra Pazidis, Karl-Heinz Schuster, Christoph Zaczek, Michael Lill, Patrick Scheible, Harald Schink, Markus Brotsack, Ulrich Loering, Toralf Gruner, Guenter Scheible
  • Publication number: 20050157401
    Abstract: Objective, in particular a projection objective for a microlithography projection-exposure installation, with at least one fluoride crystal lens. A reduction in the detrimental influence of birefringence is achieved if this lens is a (100)-lens with a lens axis which is approximately perpendicular to the {100} crystallographic planes or to the crystallographic planes equivalent thereto of the fluoride crystal. In the case of objectives with at least two fluoride crystal lenses, it is favorable if the fluoride crystal lenses are arranged such that they are rotated with respect to one another. The lens axes of the fluoride crystal lenses may in this case point not only in the <100> crystallographic direction but also in the <111> crystallographic direction or in the <110> crystallographic direction.
    Type: Application
    Filed: September 1, 2004
    Publication date: July 21, 2005
    Inventors: Aksel Goehnermeier, Alexandra Pazidis, Birgit Kuerz, Christoph Zaczek, Daniel Kraehmer
  • Publication number: 20050146683
    Abstract: An optical component and a coating system for coating substrates for optical components with essentially rotationally symmetric coatings, the system having a planetary-drive system (1) that has a rotating planet carrier (2) and several planets (4), each of which carries a single substrate, that corotate both with the planet carrier and with respect to the primary carrier. In one embodiment a set of stationary first masks (20) that allow controlling the radial variation in physical film thickness is arranged between a source (8) of material situated beneath the planets and the substrates. A set of second masks that mask off evaporation angles exceeding a limiting evaporation or incidence angle (? max) for every substrate also corotate with the primary carrier (2), which allows depositing coatings having a prescribed radial film-thickness distribution and a virtually constant density of the coating material over their full radial extents for relatively low, and only slightly varying, evaporation angles.
    Type: Application
    Filed: February 9, 2005
    Publication date: July 7, 2005
    Inventors: Harry Bauer, Matthias Heller, Hans-Jochen Paul, Jens Ullmann, Patrick Scheible, Christoph Zaczek
  • Publication number: 20050122594
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Application
    Filed: January 5, 2005
    Publication date: June 9, 2005
    Inventors: Daniel Krahmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christoph Zaczek
  • Patent number: 6863398
    Abstract: A method for coating substrates (10) for optical components with essentially rotationally symmetric coatings employs a coating system equipped with a planetary-drive system (1) that has a rotating planet carrier (2) and several planets (4), each of which carries a single substrate, that corotate both with the planet carrier and with respect to the primary carrier. In one embodiment a set of stationary first masks (20) that allow controlling the radial variation in physical film thickness is arranged between a source (8) of material situated beneath the planets and the substrates. A set of second masks that mask off evaporation angles exceeding a limiting evaporation or incidence angle (? max) for every substrate also corotate with the primary carrier (2), which allows depositing coatings having a prescribed radial film-thickness distribution and a virtually constant density of the coating material over their full radial extents for relatively low, and only slightly varying, evaporation angles.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: March 8, 2005
    Assignee: Carl Zeiss SMT AG
    Inventors: Harry Bauer, Matthias Heller, Hans-Jochen Paul, Jens Ullmann, Patrick Scheible, Christoph Zaczek
  • Patent number: 6842294
    Abstract: A catadioptric objective comprises a plurality of lenses and at least two deflecting mirrors that have reflecting surfaces that are at a specific angle, in particular of 90°, to one another. The two deflecting mirrors are arranged with their reflecting surfaces on a common base member whose position in the objective can be set.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: January 11, 2005
    Assignee: Carl Zeiss SMT AG
    Inventors: Hubert Holderer, Ulrich Weber, Alexander Kohl, Toralf Gruner, Christoph Zaczek, Jens Ullmann, Martin Weiser, Bernhard Gellrich, Hartmut Muenker
  • Publication number: 20040190151
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Application
    Filed: April 1, 2004
    Publication date: September 30, 2004
    Inventors: Daniel Krahmer, Toralf Gruner, Wilheim Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christoph Zaczek