Patents by Inventor Christophe Gueret

Christophe Gueret has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060272981
    Abstract: The invention relates to a process for treating heavy petroleum feedstocks for producing a gas oil fraction that has a sulfur content of less than 50 ppm and most often 10 ppm that includes the following stages: a) ebulliated-bed catalytic hydrocracking, b) separation from hydrogen sulfide of a distillate fraction that includes a gas oil fraction and a heavier fraction than the gas oil, c) hydrotreatment of said distillate fraction, and d) separation of a gas oil fraction with less than 50 ppm of sulfur. Make-up hydrogen, preferably all make-up hydrogen, is to stage c). Advantageously, the heavier fraction from step (b) is subjected to catalytic cracking. The invention also relates to an installation that can be used for implementing this process.
    Type: Application
    Filed: August 17, 2006
    Publication date: December 7, 2006
    Inventors: Christophe Gueret, Pierre Marion, Cecile Plain, Jerome Bonnardot, Eric Benazzi, Olivier Martin
  • Publication number: 20060118463
    Abstract: This invention relates to a novel integrated method for economically processing vacuum residue from heavy crude oils. This is accomplished by utilizing a solvent deasphalter (SDA) in the first step of the process with a C3/C4/C5 solvent such that the DAO product can thereafter be processed in a classic fixed-bed hydrotreater or hydrocracker. The SDA feed also includes recycled stripper bottoms containing unconverted residue/asphaltenes from a downstream steam stripper unit. The asphaltenes from the SDA are sent to an ebullated-bed reactor for conversion of the residue and asphaltenes. Residue conversion in the range of 60-80% is achieved and asphaltene conversion is in the range of 50-70%. The overall residue conversion, with the DAO product considered non-residue, is in the range of 80 W %-90 W % and significantly higher than could be achieved without utilizing the present invention.
    Type: Application
    Filed: December 6, 2004
    Publication date: June 8, 2006
    Inventors: James Colyar, Stephane Kressmann, Christophe Gueret
  • Publication number: 20060070915
    Abstract: This invention relates to doped catalysts on an aluminosilicate substrate with a low content of macropores and the hydrocracking/hydroconversion and hydrotreatment processes that use them. The catalyst comprises at least one hydro-dehydrogenating element that is selected from the group that is formed by the elements of group VIB and group VIII of the periodic table and a dopant in a controlled quantity that is selected from among phosphorus, boron, and silicon and a non-zeolitic substrate with a silica-alumina base that contains a quantity of more than 15% by weight and of less than or equal to 95% by weight of silica (SiO2).
    Type: Application
    Filed: September 8, 2005
    Publication date: April 6, 2006
    Inventors: Patrick Euzen, Alexandra Chaumonnot, Carole Bobin, Patrick Bourges, Christophe Gueret, Hugues Dulot
  • Patent number: 6884339
    Abstract: A process for the production of very high quality base oils optionally with simultaneous production of high quality middle distillates comprises the stages for hydrotreatment, preferably hydrocracking, on Y or beta zeolite, and atmospheric distillation. The effluent is subjected to a catalytic dewaxing on the ZSM-48 catalyst. The process then comprises a hydrofinishing stage for hydrogenating the aromatic compounds, preferably on a catalyst that comprises at least one noble metal of group VIII, chlorine and fluorine, and the stages of atmospheric and vacuum distillation. The hydrofinishing stage is conducted at a temperature lower by 20-200° C. than the catalytic dewaxing stage.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: April 26, 2005
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Pierre Marion, Alain Billon, Christophe Gueret, Jean-Claude Hipeaux, Jean Paul Gouzard
  • Publication number: 20050029161
    Abstract: A process for transforming a gas oil cut from a conversion process or from an aromatic crude is described, the aim of the process being to improve the cetane number of said cut. The process comprises at least one hydrogenation step in which said gas oil cut is passed, in the presence of hydrogen, over a catalyst comprising an amorphous mineral support, at least one compound of a group VIB metal, at least one compound of a non noble group VIII metal and at least phosphorous or a compound of phosphorous, the process then comprising a hydrocracking step in which the hydrogenated feed is passed, in the presence of hydrogen, over a catalyst comprising an acidic support, at least one compound of a group VIB metal and at least one compound of a non noble group VIII metal.
    Type: Application
    Filed: August 12, 2004
    Publication date: February 10, 2005
    Inventors: Marcel Aussillous, Alain Billon, Patrick Briot, Christophe Gueret, Slavik Kasztelan, Nathalie Marchal, Pierre Marion
  • Publication number: 20050006279
    Abstract: The invention relates to a method for treating a hydrocarbons charge comprising the following stages, in which: a) the charge is brought into contact with a solvent in order to obtain a deasphalted effluent having a content of asphaltenes below 3000 ppm by weight, b) the deasphalted effluent is cracked in the presence of hydrogen and a hydrocracking catalyst, in a bubbling-bed reactor, so as to convert at least 50 wt. % of the fraction of the deasphalted effluent boiling above 500° C. to compounds having a boiling point below 500° C., c) the effluent from stage b) is fractionated to recover gasolines, kerosene, gas oils and a first residue, and d) at least a portion of this first residue is cracked so as to obtain an effluent comprising gasolines, kerosene, gas oils and a second residue.
    Type: Application
    Filed: April 26, 2004
    Publication date: January 13, 2005
    Inventors: Christophe Gueret, Stephane Kressmann, Jan Verstraete
  • Patent number: 6814856
    Abstract: A process for transforming a gas oil cut from a conversion process or from an aromatic crude is described, the aim of the process being to improve the cetane number of said cut. The process comprises at least one hydrogenation step in which said gas oil cut is passed, in the presence of hydrogen, over a catalyst comprising an amorphous mineral support, at least one compound of a group VIB metal, at least one compound of a non noble group VIII metal and at least phosphorous or a compound of phosphorous, the process then comprising a hydrocracking step in which the hydrogenated feed is passed, in the presence of hydrogen, over a catalyst comprising an acidic support, at least one compound of a group VIB metal and at least one compound of a non noble group VIII metal.
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: November 9, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Marcel Aussillous, Alain Billion, Patrick Briot, Christophe Gueret, Slavik Kasztelan, Narhalie Marchal, Pierre Marion
  • Patent number: 6783661
    Abstract: A process for producing oils with high viscosity indices from oil distillates or effluents from a conversion unit comprises the following steps: a) catalytic hydrotreatment of the feed in the presence of hydrogen and a non zeolitic catalyst; b) fractionation of at least a portion of the effluent from step a) or step d) described below to an oil residue; c) fractionation by thermal diffusion of at least a portion of the oil residue obtained from step b) into oil fractions with different compositions and viscosity indices. Step b) can be preceded by a step d) for hydrocracking the effluent obtained from step a) in the presence of hydrogen and a zeolitic catalyst.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: August 31, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Patrick Briot, Christophe Gueret, Jean-Claude Hipeaux, Eric Benazzi, Pierre Marion, Alain Billon
  • Publication number: 20040159581
    Abstract: Process for transforming a gas-oil fraction that makes it possible to produce a fuel that has a quality according to stringent requirements in terms of sulfur content, aromatic compound content, cetane number, boiling point, T95, of 95% of the compounds and density, d15/4, at 15° C. This process comprises a hydrorefining stage and a hydrocracking stage, whereby the latter uses a catalyst that contains at least one zeolite. The conversion of products that have a boiling point of less than 150° C. is, throughout the two stages of hydrocracking and hydrorefining, less than 40% by weight and, for the hydrorefining stage, between 1 and 15% by weight. The temperature, TR2, of the hydrocracking stage is less than the temperature, TR1, of the hydrorefining stage, and the variation between temperatures TR1 and TR2 is between 0 and 80° C.
    Type: Application
    Filed: February 19, 2003
    Publication date: August 19, 2004
    Applicant: Institut Francais du Petrole
    Inventors: Eric Benazzi, Patrick Bourges, Christophe Gueret, Pierre Marion
  • Publication number: 20040134834
    Abstract: The invention concerns a method for simultaneously producing very high quality oil bases and high quality middle distillates comprising successive steps of hydroisomerization and catalytic dewaxing. The hydroisomerization is carried out in the presence of a catalyst containing at least a noble metal deposited on an amorphous acid support, the metal dispersion being less than 20%. The support is preferably an amorphous silica-alumina. The catalytic dewaxing is carried out in the presence of a catalyst containing at least a hydro-dehydrogenating element (group VIII) and at least a molecular sieve selected among ZBM-30, EU-2 and EU 11.
    Type: Application
    Filed: January 8, 2004
    Publication date: July 15, 2004
    Inventors: Eric Benazzi, Nathalie Marchal-George, Tivadar Cseri, Pierre Marion, Christophe Gueret, Slavik Kasztelan
  • Publication number: 20040138059
    Abstract: This invention relates to silico-aluminum substrates, catalysts, and the hydrocracking and hydrotreatment processes that use them.
    Type: Application
    Filed: October 30, 2003
    Publication date: July 15, 2004
    Inventors: Patrick Euzen, Carole Bobin, Magalie Roy-Auberger, Eric Benazzi, Patrick Bourges, Christophe Gueret
  • Patent number: 6733658
    Abstract: The invention concerns a process for improving the pour point of a feed comprising paraffins containing more than 10 carbon atoms, in which process the feed to be treated is brought into contact with a catalyst comprising an EU-1 zeolite and at least one hydro-dehydrogenating element, at a temperature which is in the range 170° C. to 500° C., a pressure in the range 1 to 250 bar and an hourly space velocity in the range 0.05 to 100 h−1, in the presence of hydrogen in a proportion of 50 to 2000 l/l of feed. The oils obtained have good pour points and high viscosity indices (VI). The process is also applicable to gas oils and other feeds requiring a reduction of pour point. The invention also concerns an EU-1 zeolite from which a portion of elements T (Al, Ga, Fe or B) have been removed and which has an Si/T atomic ratio of at least 10.
    Type: Grant
    Filed: June 24, 1998
    Date of Patent: May 11, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Nathalie George-Marchal, Christophe Gueret, Patrick Briot, Alain Billon, Pierre Marion
  • Publication number: 20040050753
    Abstract: The invention concerns a process for moderate pressure hydrocracking (i.e., at a hydrogen partial pressure of more than 70 bars and at most 100 bars) with a conversion of at least 80% by volume, of a feed with a T5 temperature in the range 250° C. to 400° C. and a T95 temperature of at most 470° C. (T5 and T95 measured in accordance with ASTM-D2887), to produce a diesel with a 95% distillation point of less than 360° C., a sulphur content of at most 50 ppm and a cetane number of more than 51. The process operates with or without a recycle of the liquid effluent. Highly advantageously, it can be integrated into a refinery layout comprising catalytic cracking.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 18, 2004
    Inventors: Pierre Marion, Eric Benazzi, Didier Duee, Christophe Gueret, Alain Billon
  • Publication number: 20040045869
    Abstract: The present invention relates to an improved hydrocracking process, of hydrocarbon charges, in two-stages with intermediate separation, in which the second-stage of hydrocracking is carried out in the presence of an added nitrogen content which is greater than 110 ppm by weight.
    Type: Application
    Filed: September 26, 2003
    Publication date: March 11, 2004
    Inventors: Eric Benazzi, Jean-Marie Deves, Pierre Marion, Christophe Gueret, Alain Billon, Patrick Bourges
  • Publication number: 20040040888
    Abstract: This invention relates to an improved process for hydrocracking into a stage of hydrocarbon feedstocks, using in a first reaction zone a pretreatment catalyst that exhibits a low acidity according to a standard activity test and an amorphous acid catalyst for hydrocracking that is free of zeolite in a second reaction zone that is located downstream from the first.
    Type: Application
    Filed: June 6, 2003
    Publication date: March 4, 2004
    Inventors: Eric Benazzi, Patrick Bourges, Christophe Gueret, Tivadar Cseri, Hugues Dulot
  • Publication number: 20040020825
    Abstract: Process for transforming a gas oil fraction that makes it possible to produce a fuel that has a quality according to stringent requirements in terms of sulfur content, aromatic compound content, cetane number, boiling point, T95, of 95% of the compounds and density, d15/4, at 15° C. This process comprises a hydrorefining stage and a subsequent stage, whereby the latter uses a catalyst that is selected from the group that consists of hydrorcfining catalysts and catalysts that comprise at least one mixed oxide, a metal of group VIB, and a non-noble metal of group VIII. The conversion of products that have a boiling point of less than 150° C. is, for the hydrorefining stage, between 1 and 15% by weight. The temperature, TR2, of the subsequent stage is less than the temperature, TR1, of the hydrorefining stage, and the variation between temperatures TR1 and TR2 is between 0 and 80° C.
    Type: Application
    Filed: February 19, 2003
    Publication date: February 5, 2004
    Applicant: Institut Francais du Petrole
    Inventors: Eric Benazzi, Patrick Bourges, Christophe Gueret, Pierre Marion
  • Publication number: 20040004021
    Abstract: The present invention concerns an improved procedure for producing basic oils and in particular very high quality oils, i.e. oils possessing a high viscosity index (VI), a low aromatics content, good UV stability and a low pour point, from oil cuts having an initial boiling point higher than 340° C., possibly with simultaneous production of middle distillates (in particular gasoils and kerosene) of very high quality, i.e. having a low aromatics content and a low pour point.
    Type: Application
    Filed: July 14, 2003
    Publication date: January 8, 2004
    Inventors: Eric Benazzi, Christophe Gueret, Pierre Marion, Alain Billon
  • Patent number: 6602402
    Abstract: An improved process for producing very high quality base stock and for simultaneous production of high quality middle distallates, comprising successive hydroisomerisation and catalystic dewaxing steps wherein hydroisomerisation is carried out in the presence of a catalyst containing at least one noble metal deposited on an amorphous acidic support, the dispersion of the metal being less than 20%. The support is preferably an amorphous silica-alumina. Catalytic dewaxing is carried out in the presence of a catalyst containing at least one hydrodehydrogenating element (group VIII) and at least one molecular sieve (preferably zeolite). The sieve is preferable selected from NU-10, EU-1, EU-13, zeolite and ferrierite.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: August 5, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Nathalie Marchal-George, Tivadar Cseri, Pierre Marion, Christophe Gueret, Slavik Kasztelan
  • Publication number: 20030127356
    Abstract: The invention concerns a process for improving tde pour point of a feed comprising paraffins containing more than 10 carbon atoms, in which process the feed to be treated is brought into contact with a catalyst comprising an EU-1 zeolite and at least one hydro-dehydrogenating element, at a temperature which is in the range 170° C. to 500° C., a pressure in the range 1 to 250 bar and an hourly space velocity in the range 0.05 to 100 h−1, in the presence of hydrogen in a proportion of 50 to 2000 l/l of feed. The oils obtained have good pour points and high viscosity indices (VI). The process is also applicable to gas oils and other feeds requiring a reduction of pour point. The invention also concerns an EU-1 zeolite from which a portion of elements T (Al, Ga, Fe or B) have been removed and which has an Si/T atomic ratio of at least 10.
    Type: Application
    Filed: June 24, 1998
    Publication date: July 10, 2003
    Inventors: ERIC BENAZZI, NATHALIE GEORGE-MARCHAL, CHRISTOPHE GUERET, PATRICK BRIOT, ALAIN BILLON, PIERRE MARION
  • Publication number: 20030089638
    Abstract: The invention relates to a process for treating heavy petroleum feedstocks for producing a gas oil fraction that has a sulfur content of less than 50 ppm and most often 10 ppm that includes the following stages: a) ebulliated-bed catalytic hydrocracking, b) separation from hydrogen sulfide of a distillate fraction that includes a gas oil fraction and a heavier fraction than the gas oil, c) hydrotreatment of said distillate fraction, and d) separation of a gas oil fraction with less than 50 ppm of sulfur. Make-up hydrogen, preferably all make-up hydrogen, is to stage c). Advantageously, the heavier fraction from step (b) is subjected to catalytic cracking. The invention also relates to an installation that can be used for implementing this process.
    Type: Application
    Filed: May 23, 2002
    Publication date: May 15, 2003
    Applicant: Institut Francais du Petrole
    Inventors: Christophe Gueret, Pierre Marion, Cecile Plain, Jerome Bonnardot, Eric Benazzi, Olivier Martin